題目列表(包括答案和解析)
在△ABC中,內(nèi)角A、B、C所對邊的邊長分別是a、b、c,已知c=2,C=.
(Ⅰ)若△ABC的面積等于,求a、b;
(Ⅱ)若,求△ABC的面積.
【解析】第一問中利用余弦定理及已知條件得又因為△ABC的面積等于
,所以
,得
聯(lián)立方程,解方程組得
.
第二問中。由于即為即
.
當時,
,
,
,
所以
當
時,得
,由正弦定理得
,聯(lián)立方程組
,解得
,得到
。
解:(Ⅰ) (Ⅰ)由余弦定理及已知條件得,………1分
又因為△ABC的面積等于,所以
,得
,………1分
聯(lián)立方程,解方程組得.
……………2分
(Ⅱ)由題意得,
即.
…………2分
當時,
,
,
,
……1分
所以 ………………1分
當時,得
,由正弦定理得
,聯(lián)立方程組
,解得
,
;
所以
已知向量(
),向量
,
,
且.
(Ⅰ)求向量;
(Ⅱ)若
,
,求
.
【解析】本試題主要考查了向量的數(shù)量積的運算,以及兩角和差的三角函數(shù)關(guān)系式的運用。
(1)問中∵,∴
,…………………1分
∵,得到三角關(guān)系是
,結(jié)合
,解得。
(2)由,解得
,
,結(jié)合二倍角公式
,和
,代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。
解析一:(Ⅰ)∵,∴
,…………1分
∵,∴
,即
① …………2分
又 ② 由①②聯(lián)立方程解得,
,
5分
∴ ……………6分
(Ⅱ)∵即
,
, …………7分
∴,
………8分
又∵, ………9分
, ……10分
∴.
解法二: (Ⅰ),…………………………………1分
又,∴
,即
,①……2分
又 ②
將①代入②中,可得 ③ …………………4分
將③代入①中,得……………………………………5分
∴ …………………………………6分
(Ⅱ) 方法一
∵,
,∴
,且
……7分
∴,從而
. …………………8分
由(Ⅰ)知,
; ………………9分
∴. ………………………………10分
又∵,∴
,
又
,∴
……11分
綜上可得 ………………………………12分
方法二∵,
,∴
,且
…………7分
∴.
……………8分
由(Ⅰ)知,
.
…………9分
∴
……………10分
∵,且注意到
,
∴,又
,∴
………………………11分
綜上可得 …………………12分
(若用,又∵
∴
,
如圖,分別是橢圓
:
+
=1(
)的左、右焦點,
是橢圓
的頂點,
是直線
與橢圓
的另一個交點,
=60°.
(Ⅰ)求橢圓的離心率;
(Ⅱ)已知△的面積為40
,求
的值.
【解析】 (Ⅰ)由題=60°,則
,即橢圓
的離心率為
。
(Ⅱ)因△的面積為40
,設(shè)
,又面積公式
,又直線
,
又由(Ⅰ)知,聯(lián)立方程可得
,整理得
,解得
,
,所以
,解得
。
已知中心在原點O,焦點F1、F2在x軸上的橢圓E經(jīng)過點C(2,2),且拋物線的焦點為F1.
(Ⅰ)求橢圓E的方程;
(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.
【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點坐標得到,又因為
,這樣可知得到
。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到
,再利用
可以結(jié)合韋達定理求解得到m的值和圓p的方程。
解:(Ⅰ)設(shè)橢圓E的方程為
①………………………………1分
②………………2分
③ 由①、②、③得a2=12,b2=6…………3分
所以橢圓E的方程為…………………………4分
(Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分
代入橢圓E方程,得…………………………6分
………………………7分
、
………………8分
………………………9分
……………………………10分
當m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,
圓P的方程為(x-2)2+(y-1)2=4;………………………………11分
同理,當m=-3時,直線l方程為y=-x-3,
圓P的方程為(x+2)2+(y+1)2=4
設(shè)橢圓 :
(
)的一個頂點為
,
,
分別是橢圓的左、右焦點,離心率
,過橢圓右焦點
的直線
與橢圓
交于
,
兩點.
(1)求橢圓的方程;
(2)是否存在直線 ,使得
,若存在,求出直線
的方程;若不存在,說明理由;
【解析】本試題主要考查了橢圓的方程的求解,以及直線與橢圓的位置關(guān)系的運用。(1)中橢圓的頂點為,即
又因為
,得到
,然后求解得到橢圓方程(2)中,對直線分為兩種情況討論,當直線斜率存在時,當直線斜率不存在時,聯(lián)立方程組,結(jié)合
得到結(jié)論。
解:(1)橢圓的頂點為,即
,解得
,
橢圓的標準方程為
--------4分
(2)由題可知,直線與橢圓必相交.
①當直線斜率不存在時,經(jīng)檢驗不合題意. --------5分
②當直線斜率存在時,設(shè)存在直線為
,且
,
.
由得
, ----------7分
,
,
=
所以,
----------10分
故直線的方程為
或
即或
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com