(2013•汕尾二模)設等比數列{an}的前n項和為Sn,已知an+1=2Sn+2(n∈N*).
(1)求數列{an}的通項公式;
(2)在an與an+1之間插入n個數,使這n+2個數組成公差為dn的等差數列(如:在a1與a2之間插入1個數構成第一個等差數列,其公差為d1;在a2與a3之間插入2個數構成第二個等差數列,其公差為d2,…以此類推),設第n個等差數列的和是An.是否存在一個關于n的多項式g(n),使得An=g(n)dn對任意n∈N*恒成立?若存在,求出這個多項式;若不存在,請說明理由;
(3)對于(2)中的數列d1,d2,d3,…,dn,…,這個數列中是否存在不同的三項dm,dk,dp(其中正整數m,k,p成等差數列)成等比數列,若存在,求出這樣的三項;若不存在,說明理由.