日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

(3)定義在整數集上的函數滿足:①對任意的.,②.. 試求的解析式,并判斷所求的函數是不是上的凸函數說明理由. 查看更多

 

題目列表(包括答案和解析)

若定義在區間D上的函數y=f(x)對于區間D上的任意兩個值x1、x2總有以下不等式
f(x1)+f(x2)
2
≤f(
x1+x2
2
)成立,則稱函數y=f(x)為區間D上的凸函數.
(1)證明:定義在R上的二次函數f(x)=ax2+bx+c(a<0)是凸函數;
(2)設f(x)=ax2+x(a∈R,a≠0),并且x∈[0,1]時,f(x)≤1恒成立,求實數a的取值范圍,并判斷函數
f(x)=ax2+x(a∈R,a≠0)能否成為R上的凸函數;
(3)定義在整數集Z上的函數f(x)滿足:①對任意的x,y∈Z,f(x+y)=f(x)f(y);②f(0)≠0,f(1)=2.
試求f(x)的解析式;并判斷所求的函數f(x)是不是R上的凸函數說明理由.

查看答案和解析>>

若定義在區間D上的函數y=f(x)對于區間D上的任意兩個值x1、x2總有以下不等式≤f()成立,則稱函數y=f(x)為區間D上的凸函數.
(1)證明:定義在R上的二次函數f(x)=ax2+bx+c(a<0)是凸函數;
(2)設f(x)=ax2+x(a∈R,a≠0),并且x∈[0,1]時,f(x)≤1恒成立,求實數a的取值范圍,并判斷函數
f(x)=ax2+x(a∈R,a≠0)能否成為R上的凸函數;
(3)定義在整數集Z上的函數f(x)滿足:①對任意的x,y∈Z,f(x+y)=f(x)f(y);②f(0)≠0,f(1)=2.
試求f(x)的解析式;并判斷所求的函數f(x)是不是R上的凸函數說明理由.

查看答案和解析>>

若定義在區間D上的函數y=f(x)對于區間D上的任意兩個值x1、x2總有以下不等式
f(x1)+f(x2)
2
≤f(
x1+x2
2
)成立,則稱函數y=f(x)為區間D上的凸函數.
(1)證明:定義在R上的二次函數f(x)=ax2+bx+c(a<0)是凸函數;
(2)設f(x)=ax2+x(a∈R,a≠0),并且x∈[0,1]時,f(x)≤1恒成立,求實數a的取值范圍,并判斷函數
f(x)=ax2+x(a∈R,a≠0)能否成為R上的凸函數;
(3)定義在整數集Z上的函數f(x)滿足:①對任意的x,y∈Z,f(x+y)=f(x)f(y);②f(0)≠0,f(1)=2.
試求f(x)的解析式;并判斷所求的函數f(x)是不是R上的凸函數說明理由.

查看答案和解析>>

若定義在區間D上的函數對于區間D上的任意兩個值總有以下不等式成立,則稱函數為區間D上的凸函數 .

(1)證明:定義在R上的二次函數是凸函數;

(2)設,并且時,恒成立,求實數的取值范圍,并判斷函數能否成為上的凸函數;

(3)定義在整數集Z上的函數滿足:①對任意的;②. 試求的解析式;并判斷所求的函數是不是R上的凸函數說明理由.

查看答案和解析>>

A是定義在[2,4]上且滿足如下條件的函數φ(x)組成的集合:①對任意的x∈[1,2],都有φ(2x)∈(1,2);②存在常數L(0<L<1),使得對任意的x1,x2∈[1,2],都有|φ(2x1)-φ(2x2)|≤L|x1-x2|.

(Ⅰ)設φ(x)=,x∈[2,4],證明:φ(x)∈A.

(Ⅱ)設φ(x)∈A,如果存在x0∈(1,2),使得x0=φ(2x0),那么這樣的x0是唯一的.

(Ⅲ)設φ(x)∈A,任取x1∈(1,2),令xn+1=φ(2xn),n=1,2,…,證明:給定正整數k,對任意的正整數p,成立不等式|xk+p-xk|≤|x2-x1|.

查看答案和解析>>

一.選擇題:

題號

1

2

3

4

5

6

7

8

答案

C

A

C

B

B

A

B

D

二.填空題:

9.6、30、10;                 10.?5;               11.

12.?250;                     13.;              14.③④

三.解答題:

15.解: ;  ………5分

方程有非正實數根

 

綜上: ……………………12分16.解:(I)設袋中原有個白球,由題意知

可得(舍去)

答:袋中原有3個白球. 。。。。。。。。4分

(II)由題意,的可能取值為1,2,3,4,5

 

所以的分布列為:

1

2

3

4

5

。。。。。。。。。9分

(III)因為甲先取,所以甲只有可能在第一次,第三次和第5次取球,記”甲取到白球”為事件,則

答:甲取到白球的概率為.。。。。。。。。13分

17.解:(1)由.,∴=1;。。。。。。。。。4分

(2)任取∈(1,+∞),且設,則:

>0,

在(1,+∞)上是單調遞減函數;。。。。。。。。。8分

(3)當直線∈R)與的圖象無公共點時,=1,

<2+=4=,|-2|+>2,

得:.。。。。。。。。13分

18.(Ⅰ)證明:∵底面底面, ∴

   又∵平面平面

    ∴平面3分

(Ⅱ)解:∵點分別是的中點,

,由(Ⅰ)知平面

平面

為二面角的平面角,

底面,∴與底面所成的角即為

,∵為直角三角形斜邊的中點,

為等腰三角形,且,∴

(Ⅲ)過點于點,∵底面,

   ∴底面,為直線在底面上的射影,

   要,由三垂線定理的逆定理有要

 設,則由

 又∴在直角三角形中,

∵ 

在直角三角形中,

 ,即時,

(Ⅲ)以點為坐標原點,建立如圖的直角坐標系,設,則,設,則

,

,時時,.

 

 

19  證明:(1)對任意x1, x2∈R, 當 a0,

=                         =……(3分)

∴當時,,即

  當時,函數f(x)是凸函數.   ……(4分)

 (2) 當x=0時, 對于a∈R,有f(x)≤1恒成立;當x∈(0, 1]時, 要f(x)≤1恒成立

, ∴ 恒成立,∵ x∈(0, 1], ∴ ≥1, 當=1時, 取到最小值為0,∴ a≤0, 又a≠0,∴ a的取值范圍是.

由此可知,滿足條件的實數a的取值恒為負數,由(1)可知函數f(x)是凸函數………10分

(3)令,∵,∴,……………..(11)分

,則,故

,則

;,……………..(12)分

,則;∴時,.

綜上所述,對任意的,都有;……………..(13)分

所以,不是R上的凸函數. ……………..(14)分

對任意,有

所以,不是上的凸函數. ……………..(14)分

20. 解:(1)設數列的前項和為,則

……….4分

(2)為偶數時,

為奇數時,

………9分

(3)方法1、因為所以

,時,

又由,兩式相減得

 所以若,則有………..14分

方法2、由,兩式相減得

………..11分

所以要證明,只要證明

或①由:

所以…………………14分

或②由:

…………………14分

數學歸納法:①當

②當

綜上①②知若,則有.

所以,若,則有.。。。。。。。。。14分

 

 


同步練習冊答案
主站蜘蛛池模板: 九九天堂| 高清一区二区 | 在线观看日韩精品 | k8久久久一区二区三区 | 成人久久18免费网站图片 | 日韩在线二区 | 韩日免费视频 | 国产成人精品久久二区二区 | 国产精品不卡视频 | 日韩精品一区在线 | 午夜视频免费网站 | 久久综合久久综合久久综合 | 久久99国产精品久久99大师 | 亚洲欧美日韩在线一区 | 国产视频一区二区三区四区 | 日本综合久久 | 国产午夜精品久久久久久久 | 黄色av免费观看 | 亚洲中出 | 一本色道久久综合亚洲精品不 | 一本色道久久综合狠狠躁篇的优点 | 免费黄色毛片视频 | 99国内精品久久久久久久 | 91偷拍精品一区二区三区 | 国产一区二区三区在线免费 | 嫩草影院网站入口 | 中文字幕在线观看精品视频 | 午夜成人在线视频 | 亚洲精品久久久久久久久久久 | 欧美久久久久久久久久伊人 | 日本在线一区 | 日本aaaaaa | 日韩成年人视频 | 国产精品久久一区 | 一区二区免费在线观看 | 亚洲精彩视频在线观看 | 毛片a片 | 九九热视频在线 | 欧美成人激情视频 | 午夜在线观看视频网站 | 99精品电影|