日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

由.得x>0,由.得.------- 3分 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)f(x)=(x>0)

觀察:f1(x)=f(x)=

f2(x)=f(f1(x))=

f3(x)=f(f2(x))=

f4(x)=f(f3(x))=,……

根據(jù)以上事實(shí),由歸納推理可得:

當(dāng)n∈N*n≥2時(shí),fn(x)=f(fn-1(x))=________.

查看答案和解析>>

設(shè)函數(shù)f(x)=lnxgx)=ax+,函數(shù)f(x)的圖像與x軸的交點(diǎn)也在函數(shù)g(x)的圖像上,且在此點(diǎn)處f(x)與g(x)有公切線.[來(lái)源:學(xué)。科。網(wǎng)]

(Ⅰ)求a、b的值; 

(Ⅱ)設(shè)x>0,試比較f(x)與g(x)的大小.[來(lái)源:學(xué),科,網(wǎng)Z,X,X,K]

【解析】第一問(wèn)解:因?yàn)?i>f(x)=lnxgx)=ax+

則其導(dǎo)數(shù)為

由題意得,

第二問(wèn),由(I)可知,令

,  …………8分

是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

∴當(dāng)時(shí),,有;當(dāng)時(shí),,有;當(dāng)x=1時(shí),,有

解:因?yàn)?i>f(x)=lnxgx)=ax+

則其導(dǎo)數(shù)為

由題意得,

(11)由(I)可知,令

,  …………8分

是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

∴當(dāng)時(shí),,有;當(dāng)時(shí),,有;當(dāng)x=1時(shí),,有

 

查看答案和解析>>

5.A解析:因?yàn)楹瘮?shù)有0,1,2三個(gè)零點(diǎn),可設(shè)函數(shù)為f(x)=ax(x-1)(x-2)=ax3-3ax2+2ax

因此b=-3a,又因?yàn)楫?dāng)x>2時(shí)f(x)>0所以a>0,因此b<0

若由一個(gè)2*2列聯(lián)表中的數(shù)據(jù)計(jì)算得k=4.013,那么有          把握認(rèn)為兩個(gè)變量有關(guān)系.

查看答案和解析>>

已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設(shè),若對(duì)任意,不等式 恒成立,求實(shí)數(shù)的取值范圍.

【解析】第一問(wèn)利用的定義域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是

第二問(wèn)中,若對(duì)任意不等式恒成立,問(wèn)題等價(jià)于只需研究最值即可。

解: (I)的定義域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是     ........4分

(II)若對(duì)任意不等式恒成立,

問(wèn)題等價(jià)于,                   .........5分

由(I)可知,在上,x=1是函數(shù)極小值點(diǎn),這個(gè)極小值是唯一的極值點(diǎn),

故也是最小值點(diǎn),所以;            ............6分

當(dāng)b<1時(shí),

當(dāng)時(shí),

當(dāng)b>2時(shí),;             ............8分

問(wèn)題等價(jià)于 ........11分

解得b<1 或 或    即,所以實(shí)數(shù)b的取值范圍是 

 

查看答案和解析>>

已知函數(shù)f(x)=alnx-x2+1.

(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實(shí)數(shù)a和b的值;

(2)若a<0,且對(duì)任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

【解析】第一問(wèn)中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二問(wèn)中,利用當(dāng)a<0時(shí),f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等價(jià)于f(x1)-f(x2)≥x2-x1

即f(x1)+x1≥f(x2)+x2,結(jié)合構(gòu)造函數(shù)和導(dǎo)數(shù)的知識(shí)來(lái)解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)當(dāng)a<0時(shí),f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等價(jià)于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0時(shí)恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范圍是

 

查看答案和解析>>


同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 亚洲无限资源 | 美女久久| 99精品免费观看 | 黄视频入口 | 天天操,夜夜操 | 中文字幕不卡在线 | 欧美一区二区三区免费 | 超碰人人艹 | 日韩av一二三四区 | 国产亚洲综合一区二区 | 粉嫩视频在线观看 | 久久婷婷国产麻豆91天堂 | 国产乡下妇女做爰视频 | 亚洲日本韩国在线观看 | 黄色一级大片在线免费看产 | 超碰激情 | 亚洲高清在线观看 | 黄毛片视频 | 精品视频在线免费观看 | 中国91视频 | www.精品 | 日韩av一区二区三区四区 | av影片在线播放 | 精品久久影院 | www.成人.com| 亚洲精品成人 | 五月激情六月综合 | 亚洲 精品 综合 精品 自拍 | 天天狠狠操 | 免费视频色 | 成人在线黄色 | 做爱网站 | 日本做暖暖视频高清观看 | 成人黄色在线观看 | 啪啪毛片| jizz欧美最大 | 午夜影院普通用户体验区 | 亚洲一区二区三区四区的 | 骚鸭av| 精品国产一区二区三区在线观看 | 免费aaa视频 |