日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

即 解得r=2或r=3. ------------------8分所以系數最大的項為..------------------10分說明:掌握二項式定理.展開式的通項及其常見的應用. 查看更多

 

題目列表(包括答案和解析)

求圓心在直線y=-2x上,并且經過點A(2,-1),與直線x+y=1相切的圓的方程.

【解析】利用圓心和半徑表示圓的方程,首先

設圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3,  ………4分

和y=-2x聯立解得x=1,y=-2,即圓心(1,-2)  

∴r=,

故所求圓的方程為:=2

解:法一:

設圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3,  ………4分

和y=-2x聯立解得x=1,y=-2,即圓心(1,-2)             ……………………8分

∴r=,                 ………………………10分

故所求圓的方程為:=2                   ………………………12分

法二:由條件設所求圓的方程為: 

 ,          ………………………6分

解得a=1,b=-2, =2                     ………………………10分

所求圓的方程為:=2             ………………………12分

其它方法相應給分

 

查看答案和解析>>

已知,設是方程的兩個根,不等式對任意實數恒成立;函數有兩個不同的零點.求使“P且Q”為真命題的實數的取值范圍.

【解析】本試題主要考查了命題和函數零點的運用。由題設x1+x2=a,x1x2=-2,

∴|x1-x2|=.

當a∈[1,2]時,的最小值為3. 當a∈[1,2]時,的最小值為3.

要使|m-5|≤|x1-x2|對任意實數a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判別式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

可得到要使“P∧Q”為真命題,只需P真Q真即可。

解:由題設x1+x2=a,x1x2=-2,

∴|x1-x2|=.

當a∈[1,2]時,的最小值為3.

要使|m-5|≤|x1-x2|對任意實數a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判別式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

綜上,要使“P∧Q”為真命題,只需P真Q真,即

解得實數m的取值范圍是(4,8]

 

查看答案和解析>>

函數是定義在上的奇函數,且

(1)求實數a,b,并確定函數的解析式;

(2)判斷在(-1,1)上的單調性,并用定義證明你的結論;

(3)寫出的單調減區間,并判斷有無最大值或最小值?如有,寫出最大值或最小值。(本小問不需要說明理由)

【解析】本試題主要考查了函數的解析式和奇偶性和單調性的綜合運用。第一問中,利用函數是定義在上的奇函數,且

解得

(2)中,利用單調性的定義,作差變形判定可得單調遞增函數。

(3)中,由2知,單調減區間為,并由此得到當,x=-1時,,當x=1時,

解:(1)是奇函數,

………………2分

,又

(2)任取,且

,………………6分

在(-1,1)上是增函數。…………………………………………8分

(3)單調減區間為…………………………………………10分

當,x=-1時,,當x=1時,

 

查看答案和解析>>

已知,函數

(1)當時,求函數在點(1,)的切線方程;

(2)求函數在[-1,1]的極值;

(3)若在上至少存在一個實數x0,使>g(xo)成立,求正實數的取值范圍。

【解析】本試題中導數在研究函數中的運用。(1)中,那么當時,  又    所以函數在點(1,)的切線方程為;(2)中令   有 

對a分類討論,和得到極值。(3)中,設,依題意,只需那么可以解得。

解:(Ⅰ)∵  ∴

∴  當時,  又    

∴  函數在點(1,)的切線方程為 --------4分

(Ⅱ)令   有 

①         當

(-1,0)

0

(0,

,1)

+

0

0

+

極大值

極小值

的極大值是,極小值是

②         當時,在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

綜上所述   時,極大值為,無極小值

時  極大值是,極小值是        ----------8分

(Ⅲ)設

求導,得

    

在區間上為增函數,則

依題意,只需,即 

解得  (舍去)

則正實數的取值范圍是(

 

查看答案和解析>>

已知函數

(Ⅰ)求函數的單調區間;

(Ⅱ)設,若對任意,不等式 恒成立,求實數的取值范圍.

【解析】第一問利用的定義域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數的單調遞增區間是(1,3);單調遞減區間是

第二問中,若對任意不等式恒成立,問題等價于只需研究最值即可。

解: (I)的定義域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數的單調遞增區間是(1,3);單調遞減區間是     ........4分

(II)若對任意不等式恒成立,

問題等價于,                   .........5分

由(I)可知,在上,x=1是函數極小值點,這個極小值是唯一的極值點,

故也是最小值點,所以;            ............6分

當b<1時,

時,

當b>2時,;             ............8分

問題等價于 ........11分

解得b<1 或 或    即,所以實數b的取值范圍是 

 

查看答案和解析>>


同步練習冊答案
主站蜘蛛池模板: 亚洲午夜精品视频 | 中文字幕日韩欧美一区二区三区 | 成人在线观看免费视频 | 一区二区三区日韩 | 在线黄av | 亚洲第一页在线 | 日韩精品一区二区三区在线 | 一级片国产 | 四虎影院最新网站 | 亚洲三区在线观看 | 激情五月婷婷在线 | 狠狠色香婷婷久久亚洲精品 | 精品视频一区二区三区 | 久久四色 | 欧美久久久久久 | 91嫩草在线 | 亚洲欧美中文日韩在线v日本 | 黄av在线| 亚洲国产精品久久久久久女王 | 色欧美日韩 | 色综合国产| 久草久草| 亚洲精品蜜桃 | 日韩免费在线视频 | 欧美综合色 | 久久久国产一区二区三区 | 国产96视频| 久久精美视频 | 国产成人精品久久久 | www.一区| 日韩免费视频一区二区 | 久久久亚洲一区 | 激情久久久 | 99热福利| 日韩精品无码一区二区三区 | 国产精品丝袜视频 | 免费黄色在线网址 | 亚洲成人影院在线观看 | 久久99精品久久久水蜜桃 | 国产精品视频一区二区三区 | 91久久精品www人人做人人爽 |