題目列表(包括答案和解析)
(本小題滿分12分)二次函數的圖象經過三點
.
(1)求函數的解析式(2)求函數
在區間
上的最大值和最小值
(本小題滿分12分)已知等比數列{an}中,
(Ⅰ)求數列{an}的通項公式an;
(Ⅱ)設數列{an}的前n項和為Sn,證明:;
(本小題滿分12分)已知函數,其中a為常數.
(Ⅰ)若當恒成立,求a的取值范圍;
(本小題滿分12分)
甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為
(Ⅰ)求甲至多命中2個且乙至少命中2個的概率;
(Ⅱ)若規定每投籃一次命中得3分,未命中得-1分,求乙所得分數η的概率分布和數學期望.(本小題滿分12分)已知是橢圓
的兩個焦點,O為坐標原點,點
在橢圓上,且
,圓O是以
為直徑的圓,直線
與圓O相切,并且與橢圓交于不同的兩點A、B.
(1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m
(2)當時,求弦長|AB|的取值范圍.
一、選擇題
1―12 CBDBA ACCAD BA
二、填空題
13. 14.
15.(理)
(文)
16.②④
三、解答題
17.解(1)設向量的夾角
則
…………………………………………2分
當
向量的夾角為
;…………………………4分
當
向量的夾角為
;……………………6分
(2)|對任意的
恒成立,
即,
對任意的恒成立。
即恒成立……………………8分
所以…………………………10分
解得:
故所求實數的取值范圍是
………………12分
18.(理)解:(1)的取值為1,3。
又…………………………1分
…………………………3分
的分布列為
1
3
P
…………………………5分
………………………………6分
(2)當S8=2時,即前8分鐘出現“紅燈”5次和“綠燈”3次,有已知 若第一、三分鐘出現“紅燈”,則其余六分鐘可出現“紅燈”3次………………8分
若第一、二分鐘出現“紅燈”,第三分鐘出現“綠燈”,則其后五分鐘可出現“紅燈”3次…………………………10分
故此時的概率為……………………12分
(文)解:(1)若第一個路口為紅燈,則第二個路口為綠燈的概率為
;…………………………2分
若第一個路口為綠燈,則第二個路口為綠燈的概率為…………4分
∴經過第二個路口時,遇到綠燈的概率是…………6分
(2)若第一個路口為紅燈,其它兩個路口為綠燈的概率為
;…………………………8分
若第二個路口為紅燈,其它兩個路口為綠燈的概率為:
………………………………10分
若第三個路口為紅燈,其它兩個路口為綠燈的概率為:
…………………………11分
∴經過三個路口,出現一次紅燈,兩次綠燈的概率是………………12分
19.(理)解:(1)求滿足條件①的a的取值范圍,
函數的定義域為
取任意實數時,
即…………………………2分
解得:a<1…………………………3分
求滿足條件②的a的取值范圍
設……………………4分
由可得,
說明:當
又當
∴對任意的實數x,恒有…………………………6分
要使得x取任意實數時,不等式恒成立,
須且只須…………………………7分
由①②可得,同時滿足條件(i)、(ii)的實數a的取值范圍為:
…………………………8分
(2)
……………………10分
即
∴不等式的解集是:
…………………………12分
(文)解:(1)…………4分
(2)解法一 ………………6分
因為,所以
……………………00分
解得:………………12分
解法二:當x=0時,恒成立;………………5分
當x>0時,原式或化為,………………9分
因為時取等號)………………11分
|