日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

(Ⅲ)是否存在最小整數.使得對于任意.有成立.若存在.求出的值,若不存在.說明理由. 2009年廈門市高三質量檢查測試一 查看更多

 

題目列表(包括答案和解析)

對于數列,如果存在一個正整數,使得對任意的)都有成立,那么就把這樣一類數列稱作周期為的周期數列,的最小值稱作數列的最小正周期,以下簡稱周期。例如當是周期為的周期數列,當是周期為的周期數列。

       (1)設數列滿足),不同時為0),且數列是周期為的周期數列,求常數的值;

       (2)設數列的前項和為,且

①若,試判斷數列是否為周期數列,并說明理由;

②若,試判斷數列是否為周期數列,并說明理由;

       (3)設數列滿足),,數列 的前項和為,試問是否存在,使對任意的都有成立,若存在,求出的取值范圍;不存在,    說明理由;

查看答案和解析>>

對于數列{xn},如果存在一個正整數m,使得對任意的n(n∈N*)都有xn+m=xn成立,那么就把這樣一類數列{xn}稱作周期為m的周期數列,m的最小值稱作數列{xn}的最小正周期,以下簡稱周期.例如當xn=2時,{xn}是周期為1的周期數列,當yn=sin(
π
2
n)
時,{yn}的周期為4的周期數列.
(1)設數列{an}滿足an+2=λ•an+1-an(n∈N*),a1+a,a2=b(a,b不同時為0),且數列{an}是周期為3的周期數列,求常數λ的值;
(2)設數列{an}的前n項和為Sn,且4Sn=(an+1)2
①若an>0,試判斷數列{an}是否為周期數列,并說明理由;
②若anan+1<0,試判斷數列{an}是否為周期數列,并說明理由.
(3)設數列{an}滿足an+2=-an+1-an(n∈N*),a1=1,a2=2,bn=an+1,數列{bn}的前n項和Sn,試問是否存在p、q,使對任意的n∈N*都有p≤
Sn
n
≤q
成立,若存在,求出p、q的取值范圍;不存在,說明理由.

查看答案和解析>>

對于數列{xn},如果存在一個正整數m,使得對任意的n(n∈N*)都有xn+m=xn成立,那么就把這樣一類數列{xn}稱作周期為m的周期數列,m的最小值稱作數列{xn}的最小正周期,以下簡稱周期.例如當xn=2時,{xn}是周期為1的周期數列,當數學公式時,{yn}的周期為4的周期數列.
(1)設數列{an}滿足an+2=λ•an+1-an(n∈N*),a1+a,a2=b(a,b不同時為0),且數列{an}是周期為3的周期數列,求常數λ的值;
(2)設數列{an}的前n項和為Sn,且4Sn=(an+1)2
①若an>0,試判斷數列{an}是否為周期數列,并說明理由;
②若anan+1<0,試判斷數列{an}是否為周期數列,并說明理由.
(3)設數列{an}滿足an+2=-an+1-an(n∈N*),a1=1,a2=2,bn=an+1,數列{bn}的前n項和Sn,試問是否存在p、q,使對任意的n∈N*都有數學公式成立,若存在,求出p、q的取值范圍;不存在,說明理由.

查看答案和解析>>

對于數列{xn},如果存在一個正整數m,使得對任意的n(n∈N*)都有xn+m=xn成立,那么就把這樣一類數列{xn}稱作周期為m的周期數列,m的最小值稱作數列{xn}的最小正周期,以下簡稱周期.例如當xn=2時,{xn}是周期為1的周期數列,當yn=sin(
π
2
n)
時,{yn}的周期為4的周期數列.
(1)設數列{an}滿足an+2=λ•an+1-an(n∈N*),a1+a,a2=b(a,b不同時為0),且數列{an}是周期為3的周期數列,求常數λ的值;
(2)設數列{an}的前n項和為Sn,且4Sn=(an+1)2
①若an>0,試判斷數列{an}是否為周期數列,并說明理由;
②若anan+1<0,試判斷數列{an}是否為周期數列,并說明理由.
(3)設數列{an}滿足an+2=-an+1-an(n∈N*),a1=1,a2=2,bn=an+1,數列{bn}的前n項和Sn,試問是否存在p、q,使對任意的n∈N*都有p≤
Sn
n
≤q
成立,若存在,求出p、q的取值范圍;不存在,說明理由.

查看答案和解析>>

對于數列{xn},如果存在一個正整數m,使得對任意的n(n∈N*)都有xn+m=xn成立,那么就把這樣一類數列{xn}稱作周期為m的周期數列,m的最小值稱作數列{xn}的最小正周期,以下簡稱周期.例如當xn=2時,{xn}是周期為1的周期數列,當時,{yn}的周期為4的周期數列.
(1)設數列{an}滿足an+2=λ•an+1-an(n∈N*),a1+a,a2=b(a,b不同時為0),且數列{an}是周期為3的周期數列,求常數λ的值;
(2)設數列{an}的前n項和為Sn,且4Sn=(an+1)2
①若an>0,試判斷數列{an}是否為周期數列,并說明理由;
②若anan+1<0,試判斷數列{an}是否為周期數列,并說明理由.
(3)設數列{an}滿足an+2=-an+1-an(n∈N*),a1=1,a2=2,bn=an+1,數列{bn}的前n項和Sn,試問是否存在p、q,使對任意的n∈N*都有成立,若存在,求出p、q的取值范圍;不存在,說明理由.

查看答案和解析>>

一、選擇題:(本大題12個小題,每小題5分,共60分)

CDAB,DABC,CBDA

二、填空題:(本大題4個小題,每小題4分,共16分)

13.0;    14.3;    15.3;     16.10

三、解答題:(本大題6個小題,共74分)

17.(12分)

解:(Ⅰ)由已知等式得:…………(2分)

 ………………(5分)

………………………………………………………………(6分)

(Ⅱ)……………………………………(8分)

……………………(11分)

………………………………………………………………(12分)

18.(12分)

解:由

………………………………(2分)

①當時,;……………………………(6分)

②當時,;…………………………………………(8分)

③當時,。………………………………(11分)

綜上,當時,

時,

時,。………………………(12分)

19.(12分)

解:(Ⅰ)

………………………………(7分)

(Ⅱ)

………………………(12分)

20.(12分)

解:設商場分配給超市部、服裝部、家電部的營業額依次為萬元,萬元,萬元(均為正整數),由題意得:

………………………………(5分)

由(1),(2)得………………………………(7分)

………………………………(8分)

………………………………(9分)

………………(11分)

答:分配給超市部、服裝部、家電部的營業額分別為12萬元,22萬元,21萬元,售貨員人數分別為48人,110人,42人;或者分配給三部門的營業額依次為15萬元,20萬元,20萬元,售貨員人數分別為60人,100人,40人。……………………(12分)

21.(12分)

解:(Ⅰ)設拋物線頂點為,則拋物線的焦點為,由拋物線的定義可得:

……………………………(6分)

(Ⅱ)不存在。…………………………………………………………(7分)

設過點,斜率為的直線方程為(斜率不存在時,顯然不合題意),………………………………………………………………………………(8分)

…………………………(9分)

………………………………………………………(10分)

假設在軌跡上存在兩點,令的斜率分別為,則

顯然不可能滿足

∴軌跡上不存在滿足的兩點。………………………………(12分)

22.(14分)

(Ⅰ)解:由,可以化為:

………………………………(1分)

從而…………………………………………………………(3分)

又由已知,得:

 ,  即 

∴數列是首項為,公差為的等差數列,…………………………(4分)

……………………(8分)

(Ⅱ)證明:……(9分)

(12分)

(Ⅲ)解:由于,若恒成立

………………………………(14分)

     

 


同步練習冊答案
主站蜘蛛池模板: 日韩欧美一级在线 | 综合一区| 在线欧美亚洲 | 欧美日韩在线播放 | 99视频免费在线观看 | 欧美激情一区 | 亚洲视频中文字幕 | 毛片久久 | 国产伦精品一区二区三区四区视频 | 黄色官网在线观看 | 欧美大片在线 | 国产美女高潮一区二区三区 | 一区二区三区精品 | 99福利视频| 日韩一区二区在线免费观看 | 久久伊人免费视频 | 国产精品久久久久久吹潮 | 成人在线网 | 成人精品视频一区二区三区 | 欧洲成人一区 | 91污片| 91精品久久久久久久久久 | 久久天堂网 | 欧美美女黄色网 | 草逼一区 | 韩国久久 | 国产区 在线观看 | 亚洲精品一区二区 | 国产性一级片 | 精品国产31久久久久久 | 午夜影皖| 91精品国产乱码久久久久久久久 | 四色永久 | 国产一区二区免费视频 | 国产综合精品一区二区三区 | 日韩一区二区三区在线观看 | 成人午夜激情 | 久久精品国产欧美 | 国产免费一区二区三区四区五区 | 欧美一区,二区 | 久久精品性 |