日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

當為奇數時,有,即 ① 查看更多

 

題目列表(包括答案和解析)

動物中的數學“天才”

  蜜蜂蜂房是嚴格的六角柱狀體,它的一端是平整的六角形開口,另一端是封閉的六角菱錐形的底,由三個相同的菱形組成.組成底盤的菱形的鈍角為109度28分,所有的銳角為70度32分,這樣既堅固又省料.蜂房的巢壁厚0.073毫米,誤差極小.

  丹頂鶴總是成群結隊遷飛,而且排成“人”字形.“人”字形的角度是110度.更精確地計算還表明“人”字形夾角的一半——即每邊與鶴群前進方向的夾角為54度44分8秒!而金剛石結晶體的角度正好也是54度44分8秒!是巧合還是某種大自然的“默契”?

  蜘蛛結的“八卦”形網,是既復雜又美麗的八角形幾何圖案,人們即使用直尺的圓規也很難畫出像蜘蛛網那樣勻稱的圖案.

  冬天,貓睡覺時總是把身體抱成一個球形,這其間也有數學,因為球形使身體的表面積最小,從而散發的熱量也最少.

  真正的數學“天才”是珊瑚蟲.珊瑚蟲在自己的身上記下“日歷”,它們每年在自己的體壁上“刻畫”出365條斑紋,顯然是一天“畫”一條.奇怪的是,古生物學家發現3億5千萬年前的珊瑚蟲每年“畫”出400幅“水彩畫”.天文學家告訴我們,當時地球一天僅21.9小時,一年不是365天,而是400天.

1.同學們,大自然中有許多有關數學的奧妙,許多現象有意無意地應用著數學,對于這些現象你有什么看法嗎?請你談談你對大自然中的數學現象的認識.

2.把你發現的大自然中的數學問題告訴你的同學和老師,讓他們也分享一下你認識大自然的樂趣.

查看答案和解析>>

定義:設函數y=f(x)在(a,b)內可導,f'(x)為f(x)的導數,f''(x)為f'(x)的導數即f(x)的二階導數,若函數y=f(x) 在(a,b)內的二階導數恒大于等于0,則稱函數y=f(x)是(a,b)內的下凸函數(有時亦稱為凹函數).已知函數f(x)=xlnx
(1)證明函數f(x)=xlnx是定義域內的下凸函數,并在所給直角坐標系中畫出函數f(x)=xlnx的圖象;
(2)對?x1,x2∈R+,根據所畫下凸函數f(x)=xlnx圖象特征指出x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]與x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]的大小關系;
(3)當n為正整數時,定義函數N (n)表示n的最大奇因數.如N (3)=3,N (10)=5,….記S(n)=N(1)+N(2)+…+N(2n),若
2n
i=1
xi=1
,證明:
2n
i=1
xilnxi≥-ln2n
ln
1
3S(n)-2
(i,n∈N*).

查看答案和解析>>

定義:設函數y=f(x)在(a,b)內可導,f'(x)為f(x)的導數,f''(x)為f'(x)的導數即f(x)的二階導數,若函數y=f(x) 在(a,b)內的二階導數恒大于等于0,則稱函數y=f(x)是(a,b)內的下凸函數(有時亦稱為凹函數).已知函數f(x)=xlnx
(1)證明函數f(x)=xlnx是定義域內的下凸函數,并在所給直角坐標系中畫出函數f(x)=xlnx的圖象;
(2)對?x1,x2∈R+,根據所畫下凸函數f(x)=xlnx圖象特征指出x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]與x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]的大小關系;
(3)當n為正整數時,定義函數N (n)表示n的最大奇因數.如N (3)=3,N (10)=5,….記S(n)=N(1)+N(2)+…+N(2n),若,證明:(i,n∈N*).

查看答案和解析>>

已知數列是各項均不為0的等差數列,公差為d,為其前n項和,且滿足,.數列滿足,,為數列的前n項和.

(1)求數列的通項公式和數列的前n項和

(2)若對任意的,不等式恒成立,求實數的取值范圍;

(3)是否存在正整數,使得成等比數列?若存在,求出所有的值;若不存在,請說明理由.

【解析】第一問利用在中,令n=1,n=2,

   即      

解得,, [

時,滿足

第二問,①當n為偶數時,要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時取得.

此時 需滿足.  

②當n為奇數時,要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時取得最小值-6.

此時 需滿足

第三問

     若成等比數列,則

即.

,可得,即,

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

時,滿足,

,

(2)①當n為偶數時,要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時取得.

此時 需滿足.  

②當n為奇數時,要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時取得最小值-6.

此時 需滿足

綜合①、②可得的取值范圍是

(3)

     若成等比數列,則,

即.

,可得,即,

,且m>1,所以m=2,此時n=12.

因此,當且僅當m=2, n=12時,數列中的成等比數列

 

查看答案和解析>>

函數是定義在上的奇函數,且。

(1)求實數a,b,并確定函數的解析式;

(2)判斷在(-1,1)上的單調性,并用定義證明你的結論;

(3)寫出的單調減區間,并判斷有無最大值或最小值?如有,寫出最大值或最小值。(本小問不需要說明理由)

【解析】本試題主要考查了函數的解析式和奇偶性和單調性的綜合運用。第一問中,利用函數是定義在上的奇函數,且。

解得,

(2)中,利用單調性的定義,作差變形判定可得單調遞增函數。

(3)中,由2知,單調減區間為,并由此得到當,x=-1時,,當x=1時,

解:(1)是奇函數,。

,,………………2分

,又,,

(2)任取,且,

,………………6分

,

,,

在(-1,1)上是增函數。…………………………………………8分

(3)單調減區間為…………………………………………10分

當,x=-1時,,當x=1時,。

 

查看答案和解析>>


同步練習冊答案
主站蜘蛛池模板: 成人韩免费网站 | jlzzxxxx18hd护士 | 国产精品久久久久一区二区三区共 | 国产一区久久 | 久草在线| 免费大片黄 | 伊人爱爱网 | 蜜桃av一区 | 久久精品1区2区 | 国产视频大全 | 日韩黄视频 | 四虎影视在线 | 日韩精品久久久 | 国产精品婷婷午夜在线观看 | 99re| 亚洲日韩aⅴ在线视频 | 美女福利视频 | 午夜精品久久久久久久久久久久久 | 国产欧美日韩综合精品 | 日韩久久久久久 | www久久99 | 国产精品一区久久久久 | 超碰激情 | 久久成人国产精品 | 国产精品久久久久永久免费观看 | 日韩在线视频中文字幕 | 最近韩国日本免费高清观看 | 色婷婷一区二区三区 | 在线观看日韩一区 | 欧美国产在线观看 | 久久久精品 | 超级乱淫片国语对白免费视频 | 91久久国产| 久久亚洲精品中文字幕 | 久久福利 | 观看av| 北条麻妃99精品青青久久 | 91在线成人| 乱操视频 | 国产精品久久久久久久久久妇女 | 国产中文字幕在线观看 |