題目列表(包括答案和解析)
為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:C(x)=若不建隔熱層(即x=0時),每年能源消耗費用為8萬元.設f(x)為隔熱層建造費用與20年的能源消耗費用之和.
(1)求k的值;
(2)求f(x)的表達式;
(3)利用“函數(其中
為大于0的常數),在
上是減函數,在
上是增函數”這一性質,求隔熱層修建多厚時,總費用f(x)達到最小,并求出這個最小值.
為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:C(x)=若不建隔熱層(即x=0時),每年能源消耗費用為8萬元.設f(x)為隔熱層建造費用與20年的能源消耗費用之和.
(1)求k的值;
(2)求f(x)的表達式;
(3)利用“函數(其中
為大于0的常數),在
上是減函數,在
上是增函數”這一性質,求隔熱層修建多厚時,總費用f(x)達到最小,并求出這個最小值.
序號 (i) | 分組 (分數) | 組中值(Gi) | 頻數 (人數) | 頻率(Fi) |
1 | [60,70) | 65 | ① | 0.16 |
2 | [70,80) | 75 | 22 | ② |
3 | [80,90) | 85 | 14 | 0.28 |
4 | [90,100] | 95 | ③ | ④ |
合 計 | 50 | 1 |
序號 (i) | 分組 (分數) | 組中值(Gi) | 頻數 (人數) | 頻率(Fi) |
1 | [60,70) | 65 | ① | 0.16 |
2 | [70,80) | 75 | 22 | ② |
3 | [80,90) | 85 | 14 | 0.28 |
4 | [90,100] | 95 | ③ | ④ |
合 計 | 50 | 1 |
序號 (i) | 分組 (分數) | 組中值(Gi) | 頻數 (人數) | 頻率(Fi) |
1 | [60,70) | 65 | ① | 0.16 |
2 | [70,80) | 75 | 22 | ② |
3 | [80,90) | 85 | 14 | 0.28 |
4 | [90,100] | 95 | ③ | ④ |
合 計 | 50 | 1 |
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com