題目列表(包括答案和解析)
解:因為有負根,所以在y軸左側有交點,因此
解:因為函數沒有零點,所以方程無根,則函數y=x+|x-c|與y=2沒有交點,由圖可知c>2
13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0
若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數y=f(x)-1的零點
(2)因為f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數是奇函數
數字1,2,3,4恰好排成一排,如果數字i(i=1,2,3,4)恰好出現在第i個位置上則稱有一個巧合,求巧合數的分布列。
解:能否投中,那得看拋物線與籃圈所在直線是否有交點。因為函數的零點是-2與4,籃圈所在直線x=5在4的右邊,拋物線又是開口向下的,所以投不中。
某城市出租汽車的起步價為10元,行駛路程不超出4km,則按10元的標準收租車費若行駛路程超出4km,則按每超出lkm加收2元計費(超出不足1km的部分按lkm計).從這個城市的民航機場到某賓館的路程為15km.某司機常駕車在機場與此賓館之間接送旅客,由于行車路線的不同以及途中停車時間要轉換成行車路程(這個城市規定,每停車5分鐘按lkm路程計費),這個司機一次接送旅客的行車路程ξ是一個隨機變量,
(1)他收旅客的租車費η是否也是一個隨機變量?如果是,找出租車費η與行車路程ξ的關系式;
(2)已知某旅客實付租車費38元,而出租汽車實際行駛了15km,問出租車在途中因故停車累計最多幾分鐘?這種情況下,停車累計時間是否也是一個隨機變量?
解析:A錯誤.如圖①所示,由兩個結構相同的三棱錐疊放在一起構成的幾何體,各面都是三角形,但它不是棱錐.B錯誤.如答圖②③所示,若△ABC不是直角三角形,或是直角三角形但旋轉軸不是直角邊,所得的幾何體都不是圓錐.C錯誤.若六棱錐的所有棱都相等,則底面多邊形是正六邊形.由幾何圖形知,若以正六邊形為底面,側棱長必然要大于底面邊長.D正確.
答案:D
設函數f(x)的定義域為D,若存在x0∈D,使f(x0)=x0成立,則稱以(x0,x0)為坐標的點為函數f(x)圖像上的不動點.
(Ⅰ)若函數f(x)=圖像上有兩點關于原點對稱的不動點,求a、b應滿足的條件;
(Ⅱ)在(Ⅰ)的條件下,若a=8,記函數f(x)圖像上的兩個不動點分別為A、B,M為函數圖像上的另一點,且其縱坐標yM>3,求點M到直線AB距離的最小值及取得最小值時M點的坐標;
(Ⅲ)下述命題“若定義在R上的奇函數f(x)圖像上存在有限個不動點,則不動點有奇數個”是否正確?若正確,請給予證明,并舉出一例;若不正確,請舉一反例說明.
已知函數f(x)=x4-4x3+ax2-1在區間[0,1)單調遞增,在區間[1,2)單調遞減.
(1)求a的值.
(2)若點A(x0,f(x0))在函數f(x)的圖象上,求證:點A關于直線x=1的對稱點B也在函數f(x)的圖象上.
(3)是否存在實數b,使得函數g(x)=bx2-1的圖象與函數f(x)的圖象恰好有3個交點,若存在,請求出實數b的值,若不存在,試說明理由.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com