日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

用鋼筆或圓珠筆直接答在試題卷中. 查看更多

 

題目列表(包括答案和解析)

每小題選出答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其他答案標號,不能答在試題卷上。

一、選擇題:本大題共8小題,每小題5分,共40分.在每小題給出的四個選項中,選出符合題目要求的一項.

1.設全集,則=

(A)          (B)      (C)       (D)

2.已知圓的方程為,那么下列直線中經過圓心的直線方程為

(A)                  (B)

(C)                  (D)

查看答案和解析>>

選擇題每小題選出答案后,用2B鉛筆將答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號,答在試題卷上無效。

查看答案和解析>>

將填空題和解答題用0.5毫米的黑色墨水簽字筆答在答題卡上每題對應的答題區域內.答在試題卷上無效。

查看答案和解析>>

探究函數f(x)=x+
4
x
  x∈(0,+∞)的最小值,并確定相應的x的值,列表如下,請觀察表中y值隨x值變化的特點,完成下列問題:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.102 4.24 4.3 5 5.8 7.57
(1)若當x>0時,函數f(x)=x+
4
x
時,在區間(0,2)上遞減,則在
 
上遞增;
(2)當x=
 
時,f(x)=x+
4
x
,x>0的最小值為
 

(3)試用定義證明f(x)=x+
4
x
,x>0在區間上(0,2)遞減;
(4)函數f(x)=x+
4
x
,x<0有最值嗎?是最大值還是最小值?此時x為何值?
解題說明:(1)(2)兩題的結果直接填寫在答題卷中橫線上;(4)題直接回答,不需證明.

查看答案和解析>>

探究函數f(x)=x+
4
x
  x∈(0,+∞)的最小值,并確定相應的x的值,列表如下,請觀察表中y值隨x值變化的特點,完成下列問題:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.102 4.24 4.3 5 5.8 7.57
(1)若當x>0時,函數f(x)=x+
4
x
時,在區間(0,2)上遞減,則在______上遞增;
(2)當x=______時,f(x)=x+
4
x
,x>0的最小值為______;
(3)試用定義證明f(x)=x+
4
x
,x>0在區間上(0,2)遞減;
(4)函數f(x)=x+
4
x
,x<0有最值嗎?是最大值還是最小值?此時x為何值?
解題說明:(1)(2)兩題的結果直接填寫在答題卷中橫線上;(4)題直接回答,不需證明.

查看答案和解析>>

(1)―(12)DACBD     BBAAD    CC

(13) 2      (14) 32     (15)     (16)34  

 

(1)定義集合運算:AB={z?z= xy(x+y),xAyB},設集合A={0,1},B={2,3},則集合AB的所有元素之和為( D  )

(A)0       (B)6           (C)12                 (D)18

解:當x=0時,z=0,當x=1,y=2時,z=6,當x=1,y=3時,z=12,故所有元素之和為18,選D

(2)函數y=1+ax(0<a<1)的反函數的圖象大致是( A  )

 

 

 

 

 

   (A)            (B)           (C)               (D)

解:函數y=1+ax(0<a<1)的反函數為,它的圖象是函數向右移動1個單位得到,選A

(3)設f(x)=  則不等式f(x)>2的解集為(  C )

(A)(1,2)(3,+∞)                 (B)(,+∞)

(C)(1,2) ( ,+∞)            (D)(1,2)

解:令>2(x<2),解得1<x<2。令>2(x³2)解得xÎ(,+∞)

選C

(4)在△ABC中,角ABC的對邊分別為abc,A=,a=,b=1,則c=(  B  )

(B)   1          (B)2           (C)―1           (D)

解:由正弦定理可得sinB=,又a>b,所以A>B,故B=30°,所以C=90°,故c=2,選B

(5)設向量a=(1,-3),b=(-2,4),c=(-1,-2),若表示向量4a,4b-2c,2(ac),d的有向線段首尾相連能構成四邊形,則向量d為(  D )

(A)(2,6)         (B)(-2,6)         (C)(2,-6)              (D)(-2,-6)

解:設d=(x,y),因為4a=(4,-12),4b-2c=(-6,20),2(ac)=(4,-2),依題意,有4a+(4b-2c)+2(ac)+d0,解得x=-2,y=-6,選D

(6)已知定義在R上的奇函數f(x)滿足f(x+2)=-f(x),則,f(6)的值為( B  )

(A)-1           (B) 0             (C)   1                 (D)2

解:因為fx)是定義在R上的奇函數,所以f(0)=0,又fx+4)=-fx+2)=fx),故函數

fx)的周期為4,所以f(6)=f(2)=-f(0)=0,選C

  

(7)在給定橢圓中,過焦點且垂直于長軸的弦長為,焦點到相應準線的距離為1,則該橢圓的離心率為(  B )

(A)          (B)            (C)                   (D)

解:不妨設橢圓方程為(a>b>0),則有,據此求出e=,選B

  (8)設px-x20>0,q:<0,則pq的(  A  )

(A)充分不必要條件                      (B)必要不充分條件

(C)充要條件                            (D)既不充分也不必要條件

解:px-x20>0Ûx>5或x<-4,q:<0Ûx<-2或-1<x<1或x>2,借助圖形知選A

(9)已知集合A={5},B={1,2},C={1,3,4},從這三個集合中各取一個元素構成空間直角坐標系中點的坐標,則確定的不同點的個數為(  A )

(A)33         (B) 34           (C) 35               (D)36

解:不考慮限定條件確定的不同點的個數為=36,但集合B、C中有相同元素1,由5,1,1三個數確定的不同點的個數只有三個,故所求的個數為36-3=33個,選A

(10)已知的展開式中第三項與第五項的系數之比為-,其中=-1,則展開式中常數項是( A   )

(A)-45i      (B) 45i        (C) -45            (D)45

解:第三項的系數為-,第五項的系數為,由第三項與第五項的系數之比為-可得n=10,

則=,令40-5r=0,解得r=8,故所求的常數項為=45,選A

(11)某公司招收男職員x名,女職員y名,xy須滿足約束條件則z=10x+10y的最大值是(C    )

(A)80      (B) 85         (C) 90           (D)95

解:畫出可行域:

易得A(5.5,4.5)且當直線z=10x+10y過A點時,

z取得最大值,此時z=90,選C

 

 

 

 

 

 

 

 

 

 

 

 

(12)如圖,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,EAB的中點,將△ADE與△BEC分別沿ED、EC向上折起,使A、B重合于點P,則P-DCE三棱錐的外接球的體積為(  C  )

(A)     (B)       (C)          (D) 

 

 

                                       

                                             (12題圖)

          

 

 

 

 

 

 

 

 

解:易證所得三棱錐為正四面體,它的棱長為1,故外接球半徑為,外接球的體積為,選C

絕密★啟用前

2006年普通高等學校招生全國統一考試(山東卷)

理科數學(必修+選修II)

注意事項:

1.用鋼筆或圓珠筆直接答在試題卷中。

2.答卷前將密封線內的項目填寫清楚。

 

 

得分

評卷人

 

 

二、填空題:本大題共4小題,每小題4分,共16分.答案須填在題中橫線上.

(13)若  2        .

解:      

 

 

 

(14)已知拋物線y2=4x,過點P(4,0)的直線與拋物線相交于A(x1y1),B(x2y2)兩點,則的最小值是  32        .

解:顯然³0,又=4()³8,當且僅當時取等號,所以所求的值為32。

(15)如圖,已知正三棱柱ABC-A1B1C1的所有棱長都相等,DA1C1的 中點,則直線AD 與平面B1DC所成角的正弦值為            .

 

                                                                (15題圖)

 

 

 

 

解:易證B1^平面AC1,過A點作AG^CD,則

AG^平面B1DC,于是ÐADG即ÐADC為直線AD 與平面B1DC所成角,由平面幾何知識可求得它的正弦值為。

 

(16)下列四個命題中,真命題的序號有                  (寫出所有真命題的序號).

①將函數y=的圖象按向量y=(-1,0)平移,得到的圖象對應的函數表達式為y=

②圓x2+y2+4x-2y+1=0與直線y=相交,所得弦長為2

③若sin(+)=,sin(-)=,則tancot=5

④如圖,已知正方體ABCD- A1B1C1D1P為底面ABCD內一動點,P到平面AA1D1D的距離與到直線CC1的距離相等,則P點的軌跡是拋物線的一部分.

解:①錯誤,得到的圖象對應的函數表達式應為y=|x-2|

②錯誤,圓心坐標為(-2,1),到直線y=的距離為

>半徑2,故圓與直線相離,                        

         

③正確,sin(+)==sincos+cossin

sin(-)=sincos-cossin=

兩式相加,得2 sincos=,

兩式相減,得2 cossin=,故將上兩式相除,即得tancot=5

④正確,點P到平面AD1的距離就是點P到直線AD的距離,

                 

點P到直線CC1就是點P到點C的距離,由拋物線的定義

可知點P的軌跡是拋物線。

                                                            (16題圖)

                       

 

三.解答題:本大題共6小題,共74分,解答應寫出文字說明、證明過程或演算步驟。

17.(本小題滿分12分)

已知函數,且的最大值為2,其圖象相鄰兩對稱軸間的距離為2,并過點(1,2).

(I)求

(II)計算.

解:(I)

的最大值為2,.

又其圖象相鄰兩對稱軸間的距離為2,,

.

過點,

.

(II)解法一:,

.

又的周期為4,,

解法二:

又的周期為4,,

 

18.(本小題滿分12分)設函數,其中,求的單調區間.

解:由已知得函數的定義域為,且

(1)當時,函數在上單調遞減,

(2)當時,由解得

、隨的變化情況如下表

0

+

極小值

從上表可知

當時,函數在上單調遞減.

當時,函數在上單調遞增.

綜上所述:

當時,函數在上單調遞減.

當時,函數在上單調遞減,函數在上單調遞增.

 

19.(本小題滿分12分)

如圖,已知平面平行于三棱錐的底面ABC,等邊△所在的平面與底面ABC垂直,且∠ACB=90°,設

(1)求證直線是異面直線與的公垂線;

(2)求點A到平面VBC的距離;

(3)求二面角的大小。

 

解法1:

(Ⅰ)證明:∵平面∥平面,

又∵平面⊥平面,平面∩平面,

∴⊥平面,

又,.

為與的公垂線.

(Ⅱ)解法1:過A作于D,

         ∵△為正三角形,

∴D為的中點.

∵BC⊥平面

∴,

又,

∴AD⊥平面,

∴線段AD的長即為點A到平面的距離.

在正△中,.

∴點A到平面的距離為.

解法2:取AC中點O連結,則⊥平面,且=.

由(Ⅰ)知,設A到平面的距離為x,

即,解得.

即A到平面的距離為.

所以,到平面的距離為.

(III)過點作于,連,由三重線定理知

是二面角的平面角。

在中,

所以,二面角的大小為arctan.

解法二:

取中點連,易知底面,過作直線交。

取為空間直角坐標系的原點,所在直線分別為軸,軸,軸建立如圖所示的空間直角坐標系。則。

(I),,

    又

由已知。

而。

又顯然相交,

是的公垂線。

(II)設平面的一個法向量,

  又

  由

取 得

點到平面的距離,即在平面的法向量上的投影的絕對值。

,設所求距離為。

       則

             

             

              所以,A到平面VBC的距離為.

(III)設平面的一個法向量

                      

由                                 

                       

取    

二面角為銳角,

所以,二面角的大小為

 

20.(本小題滿分12分)

袋中裝著標有數字1,2,3,4,5的小球各2個,從袋中任取3個小球,按3個小球上最大數字的9倍計分,每個小球被取出的可能性都相等。用ξ表示取出的3個小球上的最大數字,求:

(1)取出的3個小球上的數字互不相同的概率;

(2)隨機變量ξ的概率分布和數學期望;

(3)計分介于20分到40分之間的概率。

 

解:(I)解法一:“一次取出的3個小球上的數字互不相同”的事件記為,

解法二:“一次取出的3個小球上的數字互不相同的事件記為A”,“一次取出的3個小球上有兩個數字相同”的事件記為,則事件和事件是互斥事件,因為

所以.

(II)由題意有可能的取值為:2,3,4,5.

所以隨機變量的概率分布為

2

3

4

5

 

因此的數學期望為

(Ⅲ)“一次取球所得計分介于20分到40分之間”的事件記為,則

 

21.(本小題滿分12分)

雙曲線C與橢圓有相同的焦點,直線為C的一條漸近線。

(1)求雙曲線C的方程;

(2)過點的直線,交雙曲線C于A、B兩點,交軸于Q點(Q點與C的頂點不重合),當,且時,求點的坐標。

 

解:(Ⅰ)設雙曲線方程為

    由橢圓 

求得兩焦點為,

對于雙曲線,又為雙曲線的一條漸近線

  解得 ,

雙曲線的方程為

(Ⅱ)解法一:

由題意知直線的斜率存在且不等于零。

設的方程:,

在雙曲線上,

同理有:

若則直線過頂點,不合題意.

是二次方程的兩根.

此時.

所求的坐標為.

解法二:

由題意知直線的斜率存在且不等于零

設的方程,,則.

分的比為.

由定比分點坐標公式得

下同解法一

解法三:

由題意知直線的斜率存在且不等于零

設的方程:,則.

.

,,

又,

將代入得

,否則與漸近線平行。

解法四:

由題意知直線l得斜率k存在且不等于零,設的方程:,

,

同理      

.

即    。                                    (*)

消去y得.

當時,則直線l與雙曲線得漸近線平行,不合題意,。

由韋達定理有:

代入(*)式得    

所求Q點的坐標為。

 

22.(本小題滿分14分)

已知,點在函數的圖象上,其中

(1)證明數列是等比數列;

(2)設,求及數列的通項;

(3)記,求數列的前項,并證明

 

解:(Ⅰ)由已知,

             

             

              ,兩邊取對數得

是公比為2的等比數列.

(Ⅱ)由(Ⅰ)知

                                 (*)

             

                    

                     =

              由(*)式得

(Ⅲ)

               

               

                    

         

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 


同步練習冊答案
主站蜘蛛池模板: 欧美色综合 | 免费观看日韩av | 欧美精品三区 | 天堂成人国产精品一区 | 自拍偷拍欧美日韩 | 国产中文一区二区三区 | 日韩色图在线观看 | 中文久久| 欧美精品一区二区三区一线天视频 | 91人人干| 在线观看你懂的网站 | t66y最新地址一地址二69 | 伊人一区 | 超碰在 | 日日影院| 国产精品片aa在线观看 | 国产日本欧美在线 | 黄色污污在线观看 | 国产婷婷色综合av蜜臀av | 色噜噜久久 | 久久国内免费视频 | 日韩电影免费在线观看中文字幕 | 2018国产大陆天天弄 | av男人天堂网 | 东北一级毛片 | 五月激情综合婷婷 | 日本在线不卡视频 | 久久国产精品免费一区二区三区 | 黄色小视频在线观看 | 亚洲毛片网站 | 国模一区二区三区 | 在线看片成人 | 成人午夜精品一区二区三区 | 亚洲精品久久久 | 色婷婷中文字幕 | 免费日韩| 欧美在线观看禁18 | 香蕉在线视频免费 | 99久视频| 日韩精品极品视频在线 | 欧美日韩亚洲国产综合 |