題目列表(包括答案和解析)
![]() | 0 | 2 | 3 | 4 | 5 |
p | 0.03 | P1 | P2 | P3 | P4 |
(本小題滿分10分)
在某學(xué)校組織的一次藍(lán)球定點投藍(lán)訓(xùn)練中,規(guī)定每人最多投3次;在A處每投進(jìn)一球得3分,在B處每投進(jìn)一球得2分;如果前兩次得分之和超過3分即停止投籃,否則投三次。某同學(xué)在A處的命中率為0.25,在B處的命中率為
.該同學(xué)選擇先在A處投一球,以后都在B處投,用
表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為
|
0 |
2 |
3 |
4 |
5 |
|
0.03 |
|
|
|
|
求
的值;
求隨機(jī)變量
的數(shù)學(xué)期量
;
試比較該同學(xué)選擇都在B處投籃得分超過3分與選擇上述方式投籃得分超過3分的概率的大小。
設(shè)函數(shù)。
(Ⅰ)求函數(shù)的最大值和最小正周期;w.w.w.k.s.5.u.c.o.m
(Ⅱ)設(shè)A,B,C為的三個內(nèi)角,若
,且C為銳角,求
設(shè)函數(shù).
(1)求函數(shù)f(x)的最大值和最小正周期。
(2)設(shè)A、B、C為⊿ABC的三個內(nèi)角,若,
,且C為銳角,求
.
在某校組織的一次籃球定點投籃訓(xùn)練中,規(guī)定每人最多投3次;在A處每投進(jìn)一球得3分,在B處每投進(jìn)一球得2分;如果前兩次得分之和超過3分即停止投籃,否則投第三次,某同學(xué)在A處的命中率q為0.25,在B處的命中率為q
,該同學(xué)選擇先在A處投一球,以后都在B處投,用
表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為
| 0 | 2 | 3 | 4 | 5 |
w.w.w.k.s.5.u.c.o.m | 0.03 | P1 | P2 | P3 | P4 |
(1) 求q的值;w.w.w.k.s.5.u.c.o.m
(2) 求隨機(jī)變量的數(shù)學(xué)期望E
;
(3) 試比較該同學(xué)選擇都在B處投籃得分超過3分與選擇上述方式投籃得分超過3分的概率的大小。
天津精通高考復(fù)讀學(xué)校數(shù)學(xué)教研組組長 么世濤
一、選擇題 :1-4, BBBB ;5-8,DABD。
提示:1.
2.
3.用代替
得
4.
5.,
或
6.
7.略
8.
二、填空題:9.60; 10. 15:10:20 ; 11.; 12.
;
13.0.74 ; 14. ①、;②、圓;③.
提示:
9.
10.,
,
11.,
12.,
,
,
,
13.
14.略
三、解答題
15. 解:(1).
(2)設(shè)抽取件產(chǎn)品作檢驗,則
,
,得:
,即
故至少應(yīng)抽取8件產(chǎn)品才能滿足題意.
16. 解:由題意得,
,原式可化為
,
而
,
故原式=.
17. 解:(1)顯然,連接
,∵
,
,
∴.由已知
,∴
,
.
∵∽
,
,
∴ 即
.
∴.
(2)
當(dāng)且僅當(dāng)時,等號成立.此時
,即
為
的中點.于是由
,知平面
,
是其交線,則過
作
。
∴就是
與平面
所成的角.由已知得
,
,
∴,
,
.
(3) 設(shè)三棱錐的內(nèi)切球半徑為
,則
∵,
,
,
,
,
∴.
18. 解: (1) ,
(2) ∵ ,
∴當(dāng)時,
∴當(dāng)時,
,
∵,
,
,
.
∴ 的最大值為
或
中的最大者.
∵
∴ 當(dāng)時,
有最大值為
.
19.(1)解:∵函數(shù)的圖象過原點,
∴即
,
∴.
又函數(shù)的圖象關(guān)于點
成中心對稱,
∴,
.
(2)解:由題意有 即
,
即,即
.
∴數(shù)列{}是以1為首項,1為公差的等差數(shù)列.
∴,即
. ∴
.
∴ ,
,
,
.
(3)證明:當(dāng)時,
故
20. (1)解:∵,又
,
∴.
又∵
,且
∴ .
(2)解:由,
,
猜想
(3)證明:用數(shù)學(xué)歸納法證明:
①當(dāng)時,
,猜想正確;
②假設(shè)時,猜想正確,即
1°若為正奇數(shù),則
為正偶數(shù),
為正整數(shù),
2°若為正偶數(shù),則
為正整數(shù),
,又
,且
所以
即當(dāng)時,猜想也正確
由①,②可知,成立.
(二)
一、1-4,AABB,5-8,CDCB;
提示: 1. 即
2. 即
3. 即
,也就是
,
4.先確定是哪兩個人的編號與座位號一致,有種情況,如編號為1的人坐1號座位,且編號為2的人坐2號座位有以下情形:
|