題目列表(包括答案和解析)
已知函數.
(1)試求的值域;
(2)設,若對
,
,恒
成立,試求實數
的取值范圍
【解析】第一問利用
第二問中若,則
,即當
時,
,又由(Ⅰ)知
若對,
,恒有
成立,即
轉化得到。
解:(1)函數可化為,
……5分
(2) 若,則
,即當
時,
,又由(Ⅰ)知
. …………8分
若對,
,恒有
成立,即
,
,即
的取值范圍是
設關于
的不等式,
的解集是
,
函數
的定義域為
。若“
或
”為真,“
且
”為假,求
的取值范圍。
【解析】本試題主要考查了命題的真智慧以及不等式的解集的綜合運用。利用
若真則
若真,則
得
“或
”為真,“
且
”為假,則
、
一真一假分類討論得到。
若真則
若真,則
得
……………………6分
“或
”為真,“
且
”為假,則
、
一真一假
當真
假時
………………………………9分
當假
真時
………………………………12分
的取值范圍為
已知函數滿足
,
是不為
的實常數。
(1)若當時,
,求函數
的值域;
(2)在(1)的條件下,求函數的解析式;
(3)若當時,
,試研究函數
在區間
上是否可能是單調函數?
若可能,求出的取值范圍;若不可能,請說明理由。
天津精通高考復讀學校數學教研組組長 么世濤
一、選擇題 :1-4, BBBB ;5-8,DABD。
提示:1.
2.
3.用代替
得
4.
5.,
或
6.
7.略
8.
二、填空題:9.60; 10. 15:10:20 ; 11.; 12.
;
13.0.74 ; 14. ①、;②、圓;③.
提示:
9.
10.,
,
11.,
12.,
,
,
,
13.
14.略
三、解答題
15. 解:(1).
(2)設抽取件產品作檢驗,則
,
,得:
,即
故至少應抽取8件產品才能滿足題意.
16. 解:由題意得,
,原式可化為
,
而
,
故原式=.
17. 解:(1)顯然,連接
,∵
,
,
∴.由已知
,∴
,
.
∵∽
,
,
∴ 即
.
∴.
(2)
當且僅當時,等號成立.此時
,即
為
的中點.于是由
,知平面
,
是其交線,則過
作
。
∴就是
與平面
所成的角.由已知得
,
,
∴,
,
.
(3) 設三棱錐的內切球半徑為
,則
∵,
,
,
,
,
∴.
18. 解: (1) ,
(2) ∵ ,
∴當時,
∴當時,
,
∵,
,
,
.
∴ 的最大值為
或
中的最大者.
∵
∴ 當時,
有最大值為
.
19.(1)解:∵函數的圖象過原點,
∴即
,
∴.
又函數的圖象關于點
成中心對稱,
∴,
.
(2)解:由題意有 即
,
即,即
.
∴數列{}是以1為首項,1為公差的等差數列.
∴,即
. ∴
.
∴ ,
,
,
.
(3)證明:當時,
故
20. (1)解:∵,又
,
∴.
又∵
,且
∴ .
(2)解:由,
,
猜想
(3)證明:用數學歸納法證明:
①當時,
,猜想正確;
②假設時,猜想正確,即
1°若為正奇數,則
為正偶數,
為正整數,
2°若為正偶數,則
為正整數,
,又
,且
所以
即當時,猜想也正確
由①,②可知,成立.
(二)
一、1-4,AABB,5-8,CDCB;
提示: 1. 即
2. 即
3. 即
,也就是
,
4.先確定是哪兩個人的編號與座位號一致,有種情況,如編號為1的人坐1號座位,且編號為2的人坐2號座位有以下情形:
|