題目列表(包括答案和解析)
“函數存在反函數”是“函數
在R上減為函數”的( )
A.充分而不必要條件 B.必要而不充分條件
C.充分必要條件 D.既不充分也不必要條件1 |
x |
1 | x |
(1)求c的值.
(2)在函數f(x)的圖象上是否存在一點M(x0,y0),使得f(x)在點M處的切線斜率為3b?若存在,求出點M的坐標;若不存在,請說明理由.
(3)求|AC|的取值范圍.
(文)已知函數f(x)=x4-4x3+ax2-1在區間[0,1]單調遞增,在區間[1,2)單調遞減.
(1)求a的值;
(2)若點A(x0,f(x0))在函數f(x)的圖象上,求證點A關于直線x=1的對稱點B也在函數f(x)的圖象上;
(3)是否存在實數b,使得函數g(x)=bx2-1的圖象與函數f(x)的圖象恰有3個交點,若存在,請求出實數b的值;若不存在,試說明理由.
一、選擇題:
1.B 2.D 3.A 4.A 5.A 6.B 7.B 8.B 9.C 10.C
二、填空題:
11. 12.
13.
14.
15.
16.
17.
18.
19.
20.1)、5)
21.
22.
23.3)4) 24.3
三、解答題:
25解:(Ⅰ) ……2分
.
的最小正周期是
.
(Ⅱ) ∵,
∴.
∴當即
時,函數
取得最小值是
.
∵,
∴.
26解:(1)∵,∴
,即
.
∴.
由,得
或
;
由,得
.因此,
函數的單調增區間為
,
;單調減區間為
.
在
取得極大值為
;
在
取得極小值為
.
由∵,
且
∴在[-
,1]上的的最大值為
,最小值為
.
(2) ∵,∴
.
∵函數的圖象上有與
軸平行的切線,∴
有實數解.
∴,∴
,即
.
因此,所求實數的取值范圍是
.
27解:(1)在中,
,
而PD垂直底面ABCD,
,
在中,
,即
為以
為直角的直角三角形。
設點
到面
的距離為
,
由有
,
即 ,
;
(2),而
,
即,
,
,
是直角三角形;
(3)時
,
,
即,
的面積
28解:(I)因為,成立,所以:
,
由: ,得
,
由:,得
解之得: 從而,函數解析式為:
(2)由于,,設:任意兩數
是函數
圖像上兩點的橫坐標,則這兩點的切線的斜率分別是:
又因為:,所以,
,得:
知:
故,當 是函數
圖像上任意兩點的切線不可能垂直
29解:(1)∵ ∴
兩式相減得: ∴
又時,
∴
∴是首項為
,公比為
的等比數列
∴
(2)
以上各式相加得:
30解:(1)
(2)由
由
,
由此得
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com