題目列表(包括答案和解析)
,
,
為常數(shù),離心率為
的雙曲線
:
上的動(dòng)點(diǎn)
到兩焦點(diǎn)的距離之和的最小值為
,拋物線
:
的焦點(diǎn)與雙曲線
的一頂點(diǎn)重合。(Ⅰ)求拋物線
的方程;(Ⅱ)過(guò)直線
:
(
為負(fù)常數(shù))上任意一點(diǎn)
向拋物線
引兩條切線,切點(diǎn)分別為
、
,坐標(biāo)原點(diǎn)
恒在以
為直徑的圓內(nèi),求實(shí)數(shù)
的取值范圍。
【解析】第一問(wèn)中利用由已知易得雙曲線焦距為,離心率為
,則長(zhǎng)軸長(zhǎng)為2,故雙曲線的上頂點(diǎn)為
,所以?huà)佄锞
的方程
第二問(wèn)中,為
,
,
,
故直線的方程為
,即
,
所以,同理可得:
借助于根與系數(shù)的關(guān)系得到即,
是方程
的兩個(gè)不同的根,所以
由已知易得,即
解:(Ⅰ)由已知易得雙曲線焦距為,離心率為
,則長(zhǎng)軸長(zhǎng)為2,故雙曲線的上頂點(diǎn)為
,所以?huà)佄锞
的方程
(Ⅱ)設(shè)為
,
,
,
故直線的方程為
,即
,
所以,同理可得:
,
即,
是方程
的兩個(gè)不同的根,所以
由已知易得,即
10-x |
10+x |
10-x |
10+x |
已知函數(shù)在
取得極值
(1)求的單調(diào)區(qū)間(用
表示);
(2)設(shè),
,若存在
,使得
成立,求
的取值范圍.
【解析】第一問(wèn)利用
根據(jù)題意在
取得極值,
對(duì)參數(shù)a分情況討論,可知
當(dāng)即
時(shí)遞增區(qū)間:
遞減區(qū)間:
,
當(dāng)即
時(shí)遞增區(qū)間:
遞減區(qū)間:
,
第二問(wèn)中, 由(1)知:
在
,
,
在
從而求解。
解:
…..3分
在
取得極值,
……………………..4分
(1) 當(dāng)即
時(shí) 遞增區(qū)間:
遞減區(qū)間:
,
當(dāng)即
時(shí)遞增區(qū)間:
遞減區(qū)間:
,
………….6分
(2) 由(1)知:
在
,
,
在
……………….10分
, 使
成立
得:
仔細(xì)閱讀下面問(wèn)題的解法:
設(shè)A=[0, 1],若不等式21-x-a>0在A上有解,求實(shí)數(shù)a的取值范圍。
解:由已知可得 a < 21-x
令f(x)= 21-x ,∵不等式a <21-x在A上有解,
∴a <f(x)在A上的最大值.
又f(x)在[0,1]上單調(diào)遞減,f(x)max =f(0)=2. ∴實(shí)數(shù)a的取值范圍為a<2.
研究學(xué)習(xí)以上問(wèn)題的解法,請(qǐng)解決下面的問(wèn)題:
(1)已知函數(shù)f(x)=x2+2x+3(-2≤x≤-1),求f(x)的反函數(shù)及反函數(shù)的定義域A;
(2)對(duì)于(1)中的A,設(shè)g(x)=,x∈A,試判斷g(x)的單調(diào)性(寫(xiě)明理由,不必證明);
(3)若B ={x|>2x+a–5},且對(duì)于(1)中的A,A∩B≠F,求實(shí)數(shù)a的取值范圍。
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com