題目列表(包括答案和解析)
(本題滿分14分)設(shè)等比數(shù)列的首項為
,公比
,前
項和為
(Ⅰ)當時,
三數(shù)成等差數(shù)列,求數(shù)列
的通項公式;
(Ⅱ)對任意正整數(shù),命題甲:
三數(shù)構(gòu)成等差數(shù)列.
命題乙: 三數(shù)構(gòu)成等差數(shù)列.
求證:對于同一個正整數(shù),命題甲與命題乙不能同時為真命題.
設(shè)函數(shù).
(I)求的單調(diào)區(qū)間;
(II)當0<a<2時,求函數(shù)在區(qū)間
上的最小值.
【解析】第一問定義域為真數(shù)大于零,得到.
.
令,則
,所以
或
,得到結(jié)論。
第二問中, (
).
.
因為0<a<2,所以,
.令
可得
.
對參數(shù)討論的得到最值。
所以函數(shù)在
上為減函數(shù),在
上為增函數(shù).
(I)定義域為. ………………………1分
.
令,則
,所以
或
. ……………………3分
因為定義域為,所以
.
令,則
,所以
.
因為定義域為,所以
. ………………………5分
所以函數(shù)的單調(diào)遞增區(qū)間為,
單調(diào)遞減區(qū)間為.
………………………7分
(II) (
).
.
因為0<a<2,所以,
.令
可得
.…………9分
所以函數(shù)在
上為減函數(shù),在
上為增函數(shù).
①當,即
時,
在區(qū)間上,
在
上為減函數(shù),在
上為增函數(shù).
所以. ………………………10分
②當,即
時,
在區(qū)間
上為減函數(shù).
所以.
綜上所述,當時,
;
當時,
計算:lg25+lg8+lg5·lg20+(lg2)2.
[分析] 直接利用對數(shù)的運算性質(zhì)進行計算,注意對真數(shù)進行適當?shù)牟鸱峙c組合.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com