日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

的條件下.在恒成立.求c的取值范圍. 查看更多

 

題目列表(包括答案和解析)

已知二次函數f(x)=x2+bx+c(x∈R),同時滿足以下條件:
①存在實數m,使得f(m)=0,且對任意實數x,恒有f(x)≥0成立;
②存在實數k (k≠0),使得f(1-k)=f(1+k)成立.
(1)求函數y=f(x)的解析式;
(2)設數列{an}的前n項和為Sn,Sn=f(n),數列{bn}滿足關系式,問數列{bn}中是否存在不同的3項,使之成為等比數列?若存在,試寫出任意符合條件的3項;若不存在,請說明理由.

查看答案和解析>>

已知二次函數f(x)=x2+bx+c(x∈R),同時滿足以下條件:
①存在實數m,使得f(m)=0,且對任意實數x,恒有f(x)≥0成立;
②存在實數k (k≠0),使得f(1-k)=f(1+k)成立.
(1)求函數y=f(x)的解析式;
(2)設數列{an}的前n項和為Sn,Sn=f(n),數列{bn}滿足關系式bn=an+2+
2
,問數列{bn}中是否存在不同的3項,使之成為等比數列?若存在,試寫出任意符合條件的3項;若不存在,請說明理由.

查看答案和解析>>

(本小題滿分13分)已知數列{an}的前n項和為Sn,滿足關系式(2+t)Sn+1-tSn=2t+4(t≠-2,t≠0,n=1,2,3,…)

(1)當a1為何值時,數列{an}是等比數列;

(2)在(1)的條件下,設數列{an}的公比為f(t),作數列{bn}使b1=1,bn=f(bn-1)(n=2,

3,4,…),求bn

(3)在(2)條件下,如果對一切n∈N,不等式bn+bn+1<恒成立,求實數c的取值范圍.

查看答案和解析>>

(本小題滿分13分)已知數列{an}的前n項和為Sn,滿足關系式(2+t)Sn+1-tSn=2t+4(t≠-2,t≠0,n=1,2,3,…)

(1)當a1為何值時,數列{an}是等比數列;

(2)在(1)的條件下,設數列{an}的公比為f(t),作數列{bn}使b1=1,bn=f(bn-1)(n=2,

3,4,…),求bn

(3)在(2)條件下,如果對一切n∈N,不等式bn+bn+1<恒成立,求實數c的取值范圍.

查看答案和解析>>

(本小題滿分13分)已知數列{an}的前n項和為Sn,滿足關系式(2+t)Sn+1-tSn=2t+4(t≠-2,t≠0,n=1,2,3,…)

(1)當a1為何值時,數列{an}是等比數列;

(2)在(1)的條件下,設數列{an}的公比為f(t),作數列{bn}使b1=1,bn=f(bn-1)(n=2,

3,4,…),求bn

(3)在(2)條件下,如果對一切n∈N,不等式bn+bn+1<恒成立,求實數c的取值范圍.

查看答案和解析>>

第Ⅰ卷

選擇題

題號

1

2

3

4

5

6

7

8

答案

B

B

B

A

C

A

D

C

 

第Ⅱ卷

填空題

9、3 , ;    10、;     11、(A); (B);(C)();    12、0.5       13、28 ,

解答題

14、(本小題滿分12分)

解:(Ⅰ)

                       =+

                       =+

  所以,的最小正周期 

(Ⅱ)

    

由三角函數圖象知:

的取值范圍是

 

 

 

 

15、(本小題滿分12分)

方法一:

證:(Ⅰ)在Rt△BAD中,AD=2,BD=

AB=2,ABCD為正方形,

因此BDAC.                    

PA⊥平面ABCDBDÌ平面ABCD

BDPA .                      

又∵PAAC=A

BD⊥平面PAC.                 

解:(Ⅱ)由PA⊥面ABCD,知AD為PD在平面ABCD的射影,又CDAD

CDPD,知∠PDA為二面角PCDB的平面角.                      

又∵PA=AD

∴∠PDA=450 .                                                       

(Ⅲ)∵PA=AB=AD=2

PB=PD=BD=

C到面PBD的距離為d,由

,                              

         

方法二:

證:(Ⅰ)建立如圖所示的直角坐標系,

A(0,0,0)、D(0,2,0)、P(0,0,2).

在Rt△BAD中,AD=2,BD=

AB=2.

B(2,0,0)、C(2,2,0),

  

BDAPBDAC,又APAC=A

BD⊥平面PAC.                       

解:(Ⅱ)由(Ⅰ)得.

設平面PCD的法向量為,則

,∴

故平面PCD的法向量可取為                              

PA⊥平面ABCD,∴為平面ABCD的法向量.             

設二面角P―CD―B的大小為q,依題意可得

q = 450 .                                                      

(Ⅲ)由(Ⅰ)得

設平面PBD的法向量為,則

,∴x=y=z

故平面PBD的法向量可取為.                             

C到面PBD的距離為                          

 

 

16、(本小題滿分14分)

解:(1)設“甲射擊4次,至少1次未擊中目標”為事件A,則其對立事件為“4次均擊中目標”,則

(2)設“甲恰好擊中目標2次且乙恰好擊中目標3次”為事件B,則

(3)設“乙恰好射擊5次后,被中止射擊”為事件C,由于乙恰好射擊5次后被中止射擊,故必然是最后兩次未擊中目標,第三次擊中目標,第一次及第二次至多有一次未擊中目標。

 

17、(本小題滿分14分)

解:(Ⅰ)由  得

可得

因為,所以   解得,因而

 (Ⅱ)因為是首項、公比的等比數列,故

則數列的前n項和

前兩式相減,得 

   即 

 

 

18、(本小題滿分14分)

解:(1) ,設切點為,則曲線在點P的切線的斜率,由題意知有解,

.

 (2)若函數可以在時取得極值,

有兩個解,且滿足.

易得.

(3)由(2),得.

根據題意,()恒成立.

∵函數)在時有極大值(用求導的方法),

且在端點處的值為.

∴函數)的最大值為.  

所以.

 

19、(本小題滿分14分)

解:(1)∵成等比數列 ∴ 

是橢圓上任意一點,依橢圓的定義得

 

為所求的橢圓方程.

(2)假設存在,因與直線相交,不可能垂直

因此可設的方程為:

  ①

方程①有兩個不等的實數根

 ②

設兩個交點的坐標分別為 ∴

∵線段恰被直線平分 ∴

 ∴ ③ 把③代入②得

  ∴ ∴解得

∴直線的傾斜角范圍為

 

 

 


同步練習冊答案
主站蜘蛛池模板: 日韩欧美一级精品久久 | 9999亚洲| 国产视频久久久久 | 天天操,夜夜操 | 日韩精品无玛区免费专区又长又大 | 色伊人久久 | www.国产| 伊人激情影院 | av电影网在线观看 | 精品一区二区久久 | 综合久久亚洲 | 91精品国产综合久久精品 | 9999国产精品 | 久久精品国产免费 | 高清av在线 | 日韩黄色小视频 | 国产精品一区欧美 | 中文字幕二区 | 国产目拍亚洲精品99久久精品 | 亚洲精品乱码久久久久久蜜桃不卡 | 欧美一级免费 | 久久综合狠狠综合久久综合88 | 国产日本亚洲欧美 | 精品一区av | 极品美女av在线 | 欧美三级电影在线播放 | 在线免费一级片 | 一级毛片免费观看 | 欧美一二三区在线 | 日日操夜夜 | 欧美在线网站 | 成人精品鲁一区一区二区 | 一区二区三区在线 | 欧美一级特 | 99在线精品视频 | 免费观看特级毛片 | 国产成人精品亚洲777人妖 | 日韩国产在线播放 | 99热国产在线观看 | 精品国产一区二区三区久久久蜜臀 | 久久久久久亚洲精品 |