日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

2009年高考數學難點突破專題輔導十二

難點12  等差數列、等比數列的性質運用

等差、等比數列的性質是等差、等比數列的概念,通項公式,前n項和公式的引申.應用等差等比數列的性質解題,往往可以回避求其首項和公差或公比,使問題得到整體地解決,能夠在運算時達到運算靈活,方便快捷的目的,故一直受到重視.高考中也一直重點考查這部分內容.

●難點磁場

(★★★★★)等差數列{an}的前n項的和為30,前2m項的和為100,求它的前3m項的和為_________.

●案例探究

[例1]已知函數f(x)=6ec8aac122bd4f6e (x<-2).

(1)求f(x)的反函數f-1(x);

(2)設a1=1,6ec8aac122bd4f6e =-f-1(an)(nN*),求an;

(3)設Sn=a12+a22+…+an2,bn=Sn+1Sn是否存在最小正整數m,使得對任意nN*,有bn<6ec8aac122bd4f6e成立?若存在,求出m的值;若不存在,說明理由.

命題意圖:本題是一道與函數、數列有關的綜合性題目,著重考查學生的邏輯分析能力,屬★★★★★級題目.

知識依托:本題融合了反函數,數列遞推公式,等差數列基本問題、數列的和、函數單調性等知識于一爐,結構巧妙,形式新穎,是一道精致的綜合題.

錯解分析:本題首問考查反函數,反函數的定義域是原函數的值域,這是一個易錯點,(2)問以數列{6ec8aac122bd4f6e}為橋梁求an,不易突破.

技巧與方法:(2)問由式子6ec8aac122bd4f6e6ec8aac122bd4f6e=4,構造等差數列{6ec8aac122bd4f6e},從而求得an,即“借雞生蛋”是求數列通項的常用技巧;(3)問運用了函數的思想.

解:(1)設y=6ec8aac122bd4f6e,∵x<-2,∴x=-6ec8aac122bd4f6e,

y=f-1(x)=-6ec8aac122bd4f6e (x>0)

(2)∵6ec8aac122bd4f6e

∴{6ec8aac122bd4f6e}是公差為4的等差數列,

a1=1, 6ec8aac122bd4f6e=6ec8aac122bd4f6e+4(n-1)=4n-3,∵an>0,∴an=6ec8aac122bd4f6e.

(3)bn=Sn+1Sn=an+12=6ec8aac122bd4f6e,由bn<6ec8aac122bd4f6e,得m>6ec8aac122bd4f6e,

g(n)= 6ec8aac122bd4f6e,∵g(n)= 6ec8aac122bd4f6enN*上是減函數,

g(n)的最大值是g(1)=5,∴m>5,存在最小正整數m=6,使對任意nN*bn<6ec8aac122bd4f6e成立.

[例2]設等比數列{an}的各項均為正數,項數是偶數,它的所有項的和等于偶數項和的4倍,且第二項與第四項的積是第3項與第4項和的9倍,問數列{lgan}的前多少項和最大?(lg2=0.3,lg3=0.4)

命題意圖:本題主要考查等比數列的基本性質與對數運算法則,等差數列與等比數列之間的聯系以及運算、分析能力.屬★★★★★級題目.

知識依托:本題須利用等比數列通項公式、前n項和公式合理轉化條件,求出an;進而利用對數的運算性質明確數列{lgan}為等差數列,分析該數列項的分布規律從而得解.

錯解分析:題設條件中既有和的關系,又有項的關系,條件的正確轉化是關鍵,計算易出錯;而對數的運算性質也是易混淆的地方.

技巧與方法:突破本題的關鍵在于明確等比數列各項的對數構成等差數列,而等差數列中前n項和有最大值,一定是該數列中前面是正數,后面是負數,當然各正數之和最大;另外,等差數列Snn的二次函數,也可由函數解析式求最值.

解法一:設公比為q,項數為2m,mN*,依題意有

6ec8aac122bd4f6e

化簡得6ec8aac122bd4f6e.

設數列{lgan}前n項和為Sn,則

Sn=lga1+lga1q2+…+lga1qn1=lga1n?q1+2++(n1)

=nlga1+6ec8aac122bd4f6en(n-1)?lgq=n(2lg2+lg3)-6ec8aac122bd4f6en(n-1)lg3

=(-6ec8aac122bd4f6e)?n2+(2lg2+6ec8aac122bd4f6elg3)?n

可見,當n=6ec8aac122bd4f6e時,Sn最大.

6ec8aac122bd4f6e=5,故{lgan}的前5項和最大.

解法二:接前,6ec8aac122bd4f6e,于是lgan=lg[108(6ec8aac122bd4f6e)n1]=lg108+(n-1)lg6ec8aac122bd4f6e,

∴數列{lgan}是以lg108為首項,以lg6ec8aac122bd4f6e為公差的等差數列,令lgan≥0,得2lg2-(n-4)lg3≥0,∴n6ec8aac122bd4f6e=5.5.

由于nN*,可見數列{lgan}的前5項和最大.

●錦囊妙計

1.等差、等比數列的性質是兩種數列基本規律的深刻體現,是解決等差、等比數列問題的既快捷又方便的工具,應有意識去應用.

2.在應用性質時要注意性質的前提條件,有時需要進行適當變形.

3.“巧用性質、減少運算量”在等差、等比數列的計算中非常重要,但用“基本量法”并樹立“目標意識”,“需要什么,就求什么”,既要充分合理地運用條件,又要時刻注意題的目標,往往能取得與“巧用性質”解題相同的效果.

●殲滅難點訓練

一、選擇題

1.(★★★★)等比數列{an}的首項a1=-1,前n項和為Sn,若6ec8aac122bd4f6e,則6ec8aac122bd4f6eSn等于(    )

試題詳情

6ec8aac122bd4f6e                       C.2                                   D.-2

試題詳情

二、填空題

2.(★★★★)已知a,b,a+b成等差數列,a,b,ab成等比數列,且0<logm(ab)<1,則m的取值范圍是_________.

試題詳情

3.(★★★★)等差數列{an}共有2n+1項,其中奇數項之和為319,偶數項之和為290,則其中間項為_________.

試題詳情

4.(★★★★)已知abc成等比數列,如果axbbyc都成等差數列,則6ec8aac122bd4f6e=_________.

試題詳情

三、解答題

5.(★★★★★)設等差數列{an}的前n項和為Sn,已知a3=12,S12>0,S13<0.

(1)求公差d的取值范圍;

(2)指出S1S2、…、S12中哪一個值最大,并說明理由.

試題詳情

6.(★★★★★)已知數列{an}為等差數列,公差d≠0,由{an}中的部分項組成的數列

試題詳情

a6ec8aac122bd4f6e,a6ec8aac122bd4f6e,…,a6ec8aac122bd4f6e,…為等比數列,其中b1=1,b2=5,b3=17.

(1)求數列{bn}的通項公式;

試題詳情

(2)記Tn=C6ec8aac122bd4f6eb1+C6ec8aac122bd4f6eb2+C6ec8aac122bd4f6eb3+…+C6ec8aac122bd4f6ebn,求6ec8aac122bd4f6e.

試題詳情

7.(★★★★)設{an}為等差數列,{bn}為等比數列,a1=b1=1,a2+a4=b3,b2?b4=a3,分別求出{an}及{bn}的前n項和S10T10.

試題詳情

8.(★★★★★){an}為等差數列,公差d≠0,an≠0,(nN*),且akx2+2ak+1x+ak+2=0(kN*)

(1)求證:當k取不同自然數時,此方程有公共根;

試題詳情

(2)若方程不同的根依次為x1,x2,…,xn,…,求證:數列6ec8aac122bd4f6e為等差數列.

試題詳情

       難點磁場

6ec8aac122bd4f6e解法一:將Sm=30,S2m=100代入Sn=na1+6ec8aac122bd4f6ed,得:

6ec8aac122bd4f6e                                               

6ec8aac122bd4f6e

解法二:由6ec8aac122bd4f6e知,要求S3m只需求ma1+6ec8aac122bd4f6e],將②-①得ma1+ 6ec8aac122bd4f6ed=70,∴S3m=210.

解法三:由等差數列{an}的前n項和公式知,Sn是關于n的二次函數,即Sn=An2+Bn(AB是常數).將Sm=30,S2m=100代入,得

6ec8aac122bd4f6e,∴S3m=A?(3m)2+B?3m=210

解法四:S3m=S2m+a2m+1+a2m+2+…+a3m=S2m+(a1+2md)+…+(am+2md)=S2m+(a1+…+am)+m?2md=S2m+Sm+2m2d.

由解法一知d=6ec8aac122bd4f6e,代入得S3m=210.

解法五:根據等差數列性質知:Sm,S2mSm,S3mS2m也成等差數列,從而有:2(S2mSm)=Sm+(S3mS2m)

S3m=3(S2mSm)=210

解法六:∵Sn=na1+6ec8aac122bd4f6ed,

6ec8aac122bd4f6e=a1+6ec8aac122bd4f6ed

∴點(n, 6ec8aac122bd4f6e)是直線y=6ec8aac122bd4f6e+a1上的一串點,由三點(m,6ec8aac122bd4f6e),(2m, 6ec8aac122bd4f6e),(3m, 6ec8aac122bd4f6e)共線,易得S3m=3(S2mSm)=210.

解法七:令m=1得S1=30,S2=100,得a1=30,a1+a2=100,∴a1=30,a2=70

a3=70+(70-30)=110

S3=a1+a2+a3=210

答案:210

殲滅難點訓練

一、1.解析:利用等比數列和的性質.依題意,6ec8aac122bd4f6e,而a1=-1,故q≠1,

6ec8aac122bd4f6e,根據等比數列性質知S5S10S5S15S10,…,也成等比數列,且它的公比為q5,∴q5=-6ec8aac122bd4f6e,即q=-6ec8aac122bd4f6e.

6ec8aac122bd4f6e

答案:B

二、2.解析:解出ab,解對數不等式即可.

答案:(-∞,8)

3.解析:利用S/S=6ec8aac122bd4f6e得解.

答案:第11項a11=29

4.解法一:賦值法.

解法二:

b=aq,c=aq2,x=6ec8aac122bd4f6e(a+b)=6ec8aac122bd4f6ea(1+q),y=6ec8aac122bd4f6e(b+c)=6ec8aac122bd4f6eaq(1+q),

6ec8aac122bd4f6e =6ec8aac122bd4f6e=2.

答案:2

三、5.(1)解:依題意有:6ec8aac122bd4f6e

解之得公差d的取值范圍為-6ec8aac122bd4f6ed<-3.

(2)解法一:由d<0可知a1>a2>a3>…>a12>a13,因此,在S1S2,…,S12Sk為最大值的條件為:ak≥0且ak+1<0,即6ec8aac122bd4f6e

a3=12,∴6ec8aac122bd4f6e,∵d<0,∴2-6ec8aac122bd4f6ek≤3-6ec8aac122bd4f6e

∵-6ec8aac122bd4f6ed<-3,∴6ec8aac122bd4f6e<-6ec8aac122bd4f6e<4,得5.5<k<7.

因為k是正整數,所以k=6,即在S1S2,…,S12中,S6最大.

解法二:由d<0得a1>a2>…>a12>a13,因此,若在1≤k≤12中有自然數k,使得ak≥0,且ak+1<0,則SkS1S2,…,S12中的最大值.由等差數列性質得,當mnpqN*,且m+n=p+q時,am+an=ap+aq.所以有:2a7=a1+a13=6ec8aac122bd4f6eS13<0,∴a7<0,a7+a6=a1+a12=6ec8aac122bd4f6eS12>0,∴a6≥-a7>0,故在S1S2,…,S12S6最大.

解法三:依題意得:6ec8aac122bd4f6e

6ec8aac122bd4f6e最小時,Sn最大;

∵-6ec8aac122bd4f6ed<-3,∴6<6ec8aac122bd4f6e(5-6ec8aac122bd4f6e)<6.5.從而,在正整數中,當n=6時,[n6ec8aac122bd4f6e (5-6ec8aac122bd4f6e)]2最小,所以S6最大.

點評:該題的第(1)問通過建立不等式組求解屬基本要求,難度不高,入手容易.第(2)問難度較高,為求{Sn}中的最大值Sk,1≤k≤12,思路之一是知道Sk為最大值的充要條件是ak≥0且ak+1<0,思路之三是可視Snn的二次函數,借助配方法可求解.它考查了等價轉化的數學思想、邏輯思維能力和計算能力,較好地體現了高考試題注重能力考查的特點.而思路之二則是通過等差數列的性質等和性探尋數列的分布規律,找出“分水嶺”,從而得解.

6.解:(1)由題意知a52=a1?a17,即(a1+4d)2=a1(a1+16d)6ec8aac122bd4f6ea1d=2d2,

d≠0,∴a1=2d,數列{6ec8aac122bd4f6e}的公比q=6ec8aac122bd4f6e=3,

6ec8aac122bd4f6e=a1?3n1                                                                                         ①

6ec8aac122bd4f6e=a1+(bn-1)d=6ec8aac122bd4f6e                                                                     ②

由①②得a1?3n1=6ec8aac122bd4f6e?a1.∵a1=2d≠0,∴bn=2?3n1-1.

(2)Tn=C6ec8aac122bd4f6eb1+C6ec8aac122bd4f6eb2+…+C6ec8aac122bd4f6ebn=C6ec8aac122bd4f6e (2?30-1)+C6ec8aac122bd4f6e?(2?31-1)+…+C6ec8aac122bd4f6e(2?3n1-1)=6ec8aac122bd4f6e(C6ec8aac122bd4f6e+C6ec8aac122bd4f6e?32+…+C6ec8aac122bd4f6e?3n)-(C6ec8aac122bd4f6e+C6ec8aac122bd4f6e+…+C6ec8aac122bd4f6e)=6ec8aac122bd4f6e[(1+3)n-1]-(2n-1)= 6ec8aac122bd4f6e?4n-2n+6ec8aac122bd4f6e,

6ec8aac122bd4f6e

7.解:∵{an}為等差數列,{bn}為等比數列,∴a2+a4=2a3,b2?b4=b32,

已知a2+a4=b3,b2?b4=a3,∴b3=2a3,a3=b32,

b3=2b32,∵b3≠0,∴b3=6ec8aac122bd4f6e,a3=6ec8aac122bd4f6e.

a1=1,a3=6ec8aac122bd4f6e,知{an}的公差d=-6ec8aac122bd4f6e,

S10=10a1+6ec8aac122bd4f6ed=-6ec8aac122bd4f6e.

b1=1,b3=6ec8aac122bd4f6e,知{bn}的公比q=6ec8aac122bd4f6eq=-6ec8aac122bd4f6e,

6ec8aac122bd4f6e

8.證明:(1)∵{an}是等差數列,∴2ak+1=ak+ak+2,故方程akx2+2ak+1x+ak+2=0可變為(akx+ak+2)(x+1)=0,

∴當k取不同自然數時,原方程有一個公共根-1.

(2)原方程不同的根為xk=6ec8aac122bd4f6e

6ec8aac122bd4f6e

 

 

 

 

 


同步練習冊答案
主站蜘蛛池模板: 欧美一级欧美三级在线观看 | 不卡成人 | 国产女爽爽视频精品免费 | 午夜精品网站 | 青青综合网 | 精品日韩在线 | 韩国一区二区视频 | a在线免费 | 亚洲三级免费观看 | 国产精品国产自产拍高清 | 黄色av网站在线观看 | www.色综合 | 影音先锋在线看片资源 | 国产高清精品一区 | 久久一区 | 久久午夜视频 | 国产美女精品视频 | 久久亚洲精品中文字幕 | 亚洲高清在线视频 | 青青草久草在线 | 日韩中文字幕在线看 | 亚洲国产精品精华液com | 国产欧美第一页 | 国产精品久久久久久中文字 | 欧美激情一区二区三区蜜桃视频 | 欧美日韩精品免费观看视频 | av国产精品毛片一区二区小说 | 日韩欧美一级在线 | 精品不卡 | 一区二区日韩精品 | 免费在线成人 | 亚洲精品免费视频 | 久久精品国产欧美 | 国产成人在线视频 | 91精品一区二区三区久久久久 | 国产精品国产三级国产aⅴ中文 | 国产小视频在线免费观看 | 另类天堂| 99久热精品 | 亚洲欧美视频一区 | av手机在线播放 |