日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

高考數(shù)學(xué)復(fù)習(xí)易做易錯(cuò)題選

排列組合易錯(cuò)題正誤解析

排列組合問題類型繁多、方法豐富、富于變化,稍不注意,極易出錯(cuò).本文選擇一些在教學(xué)中學(xué)生常見的錯(cuò)誤進(jìn)行正誤解析,以饗讀者.

1沒有理解兩個(gè)基本原理出錯(cuò)

排列組合問題基于兩個(gè)基本計(jì)數(shù)原理,即加法原理和乘法原理,故理解“分類用加、分步用乘”是解決排列組合問題的前提.

例1(1995年上海高考題)從6臺(tái)原裝計(jì)算機(jī)和5臺(tái)組裝計(jì)算機(jī)中任意選取5臺(tái),其中至少有原裝與組裝計(jì)算機(jī)各兩臺(tái),則不同的取法有    種.

誤解:因?yàn)榭梢匀?臺(tái)原裝與3臺(tái)組裝計(jì)算機(jī)或是3臺(tái)原裝與2臺(tái)組裝計(jì)算機(jī),所以只有2種取法.

錯(cuò)因分析:誤解的原因在于沒有意識(shí)到“選取2臺(tái)原裝與3臺(tái)組裝計(jì)算機(jī)或是3臺(tái)原裝與2臺(tái)組裝計(jì)算機(jī)”是完成任務(wù)的兩“類”辦法,每類辦法中都還有不同的取法.

正解:由分析,完成第一類辦法還可以分成兩步:第一步在原裝計(jì)算機(jī)中任意選取2臺(tái),有種方法;第二步是在組裝計(jì)算機(jī)任意選取3臺(tái),有種方法,據(jù)乘法原理共有種方法.同理,完成第二類辦法中有種方法.據(jù)加法原理完成全部的選取過程共有種方法.

例2  在一次運(yùn)動(dòng)會(huì)上有四項(xiàng)比賽的冠軍在甲、乙、丙三人中產(chǎn)生,那么不同的奪冠情況共有(    )種.

(A)          (B)       (C)         (D)

誤解:把四個(gè)冠軍,排在甲、乙、丙三個(gè)位置上,選A.

錯(cuò)因分析:誤解是沒有理解乘法原理的概念,盲目地套用公式.

正解:四項(xiàng)比賽的冠軍依次在甲、乙、丙三人中選取,每項(xiàng)冠軍都有3種選取方法,由乘法原理共有種.

說明:本題還有同學(xué)這樣誤解,甲乙丙奪冠均有四種情況,由乘法原理得.這是由于沒有考慮到某項(xiàng)冠軍一旦被一人奪得后,其他人就不再有4種奪冠可能.

2判斷不出是排列還是組合出錯(cuò)

在判斷一個(gè)問題是排列還是組合問題時(shí),主要看元素的組成有沒有順序性,有順序的是排列,無順序的是組合.

例3 有大小形狀相同的3個(gè)紅色小球和5個(gè)白色小球,排成一排,共有多少種不同的排列方法?

誤解:因?yàn)槭?個(gè)小球的全排列,所以共有種方法.

錯(cuò)因分析:誤解中沒有考慮3個(gè)紅色小球是完全相同的,5個(gè)白色小球也是完全相同的,同色球之間互換位置是同一種排法.

正解:8個(gè)小球排好后對(duì)應(yīng)著8個(gè)位置,題中的排法相當(dāng)于在8個(gè)位置中選出3個(gè)位置給紅球,剩下的位置給白球,由于這3個(gè)紅球完全相同,所以沒有順序,是組合問題.這樣共有:排法.                                                                                                 

3重復(fù)計(jì)算出錯(cuò)

在排列組合中常會(huì)遇到元素分配問題、平均分組問題等,這些問題要注意避免重復(fù)計(jì)數(shù),產(chǎn)生錯(cuò)誤。

例4(2002年北京文科高考題)5本不同的書全部分給4個(gè)學(xué)生,每個(gè)學(xué)生至少一本,不同的分法種數(shù)為(    )

(A)480 種         (B)240種       (C)120種         (D)96種

誤解:先從5本書中取4本分給4個(gè)人,有種方法,剩下的1本書可以給任意一個(gè)人有4種分法,共有種不同的分法,選A.

錯(cuò)因分析:設(shè)5本書為,四個(gè)人為甲、乙、丙、丁.按照上述分法可能如下的表1和表2: 

 

 

 

表1是甲首先分得、乙分得、丙分得、丁分得,最后一本書給甲的情況;表2是甲首先分得、乙分得、丙分得、丁分得,最后一本書給甲的情況.這兩種情況是完全相同的,而在誤解中計(jì)算成了不同的情況。正好重復(fù)了一次.

正解:首先把5本書轉(zhuǎn)化成4本書,然后分給4個(gè)人.第一步:從5本書中任意取出2本捆綁成一本書,有種方法;第二步:再把4本書分給4個(gè)學(xué)生,有種方法.由乘法原理,共有種方法,故選B.

例5  某交通崗共有3人,從周一到周日的七天中,每天安排一人值班,每人至少值2天,其不同的排法共有(    )種.

(A)5040          (B)1260       (C)210         (D)630

誤解:第一個(gè)人先挑選2天,第二個(gè)人再挑選2天,剩下的3天給第三個(gè)人,這三個(gè)人再進(jìn)行全排列.共有:,選B.

錯(cuò)因分析:這里是均勻分組問題.比如:第一人挑選的是周一、周二,第二人挑選的是周三、周四;也可能是第一個(gè)人挑選的是周三、周四,第二人挑選的是周一、周二,所以在全排列的過程中就重復(fù)計(jì)算了.

正解:種.

4遺漏計(jì)算出錯(cuò)

在排列組合問題中還可能由于考慮問題不夠全面,因?yàn)檫z漏某些情況,而出錯(cuò)。

例6  用數(shù)字0,1,2,3,4組成沒有重復(fù)數(shù)字的比1000大的奇數(shù)共有(  )

(A)36個(gè)        (B)48個(gè)     (C)66個(gè)       (D)72個(gè)

試題詳情

誤解:如右圖,最后一位只能是1或3有兩種取法,

又因?yàn)榈?位不能是0,在最后一位取定后只有3種取

試題詳情

法,剩下3個(gè)數(shù)排中間兩個(gè)位置有種排法,共有個(gè).

錯(cuò)因分析:誤解只考慮了四位數(shù)的情況,而比1000大的奇數(shù)還可能是五位數(shù).

試題詳情

正解:任一個(gè)五位的奇數(shù)都符合要求,共有個(gè),再由前面分析四位數(shù)個(gè)數(shù)和五位數(shù)個(gè)數(shù)之和共有72個(gè),選D.

5忽視題設(shè)條件出錯(cuò)

試題詳情

在解決排列組合問題時(shí)一定要注意題目中的每一句話甚至每一個(gè)字和符號(hào),不然就可能多解或者漏解.

例7  (2003全國高考題)如圖,一個(gè)

地區(qū)分為5個(gè)行政區(qū)域,現(xiàn)給地圖著色,

要求相鄰區(qū)域不得使用同一顏色,現(xiàn)有4

種顏色可供選擇,則不同的著色方法共有          種.(以數(shù)字作答)

試題詳情

誤解:先著色第一區(qū)域,有4種方法,剩下3種顏色涂四個(gè)區(qū)域,即有一種顏色涂相對(duì)的兩塊區(qū)域,有種,由乘法原理共有:種.

錯(cuò)因分析:據(jù)報(bào)導(dǎo),在高考中有很多考生填了48種.這主要是沒有看清題設(shè)“有4種顏色可供選擇”,不一定需要4種顏色全部使用,用3種也可以完成任務(wù).

試題詳情

正解:當(dāng)使用四種顏色時(shí),由前面的誤解知有48種著色方法;當(dāng)僅使用三種顏色時(shí):從4種顏色中選取3種有種方法,先著色第一區(qū)域,有3種方法,剩下2種顏色涂四個(gè)區(qū)域,只能是一種顏色涂第2、4區(qū)域,另一種顏色涂第3、5區(qū)域,有2種著色方法,由乘法原理有種.綜上共有:種.

試題詳情

例8 已知是關(guān)于的一元二次方程,其中,求解集不同的一元二次方程的個(gè)數(shù).

試題詳情

誤解:從集合中任意取兩個(gè)元素作為,方程有個(gè),當(dāng)取同一個(gè)數(shù)時(shí)方程有1個(gè),共有個(gè).

試題詳情

錯(cuò)因分析:誤解中沒有注意到題設(shè)中:“求解集不同的……”所以在上述解法中要去掉同解情況,由于同解、同解,故要減去2個(gè)。

試題詳情

正解:由分析,共有個(gè)解集不同的一元二次方程.

6未考慮特殊情況出錯(cuò)

在排列組合中要特別注意一些特殊情況,一有疏漏就會(huì)出錯(cuò).

例9 現(xiàn)有1角、2角、5角、1元、2元、5元、10元、50元人民幣各一張,100元人民幣2張,從中至少取一張,共可組成不同的幣值種數(shù)是(    )

(A)1024種   (B)1023種   (C)1536種   (D)1535種

試題詳情

誤解:因?yàn)楣灿腥嗣駧?0張,每張人民幣都有取和不取2種情況,減去全不取的1種情況,共有種.

錯(cuò)因分析:這里100元面值比較特殊有兩張,在誤解中被計(jì)算成 4 種情況,實(shí)際上只有不取、取一張和取二張3種情況.

試題詳情

正解:除100元人民幣以外每張均有取和不取2種情況,100元人民幣的取法有3種情況,再減去全不取的1種情況,所以共有種.

7題意的理解偏差出錯(cuò)

     例10  現(xiàn)有8個(gè)人排成一排照相,其中有甲、乙、丙三人不能相鄰的排法有(   )種.

試題詳情

(A)   (B)  (C)   (D)

試題詳情

誤解:除了甲、乙、丙三人以外的5人先排,有種排法,5人排好后產(chǎn)生6個(gè)空檔,插入甲、乙、丙三人有種方法,這樣共有種排法,選A.

錯(cuò)因分析:誤解中沒有理解“甲、乙、丙三人不能相鄰”的含義,得到的結(jié)果是“甲、乙、丙三人互不相鄰”的情況.“甲、乙、丙三人不能相鄰”是指甲、乙、丙三人不能同時(shí)相鄰,但允許其中有兩人相鄰.

試題詳情

正解:在8個(gè)人全排列的方法數(shù)中減去甲、乙、丙全相鄰的方法數(shù),就得到甲、乙、丙三人不相鄰的方法數(shù),即,故選B.

8解題策略的選擇不當(dāng)出錯(cuò)

有些排列組合問題用直接法或分類討論比較困難,要采取適當(dāng)?shù)慕鉀Q策略,如間接法、插入法、捆綁法、概率法等,有助于問題的解決.

例10  高三年級(jí)的三個(gè)班到甲、乙、丙、丁四個(gè)工廠進(jìn)行社會(huì)實(shí)踐,其中工廠甲必須有班級(jí)去,每班去何工廠可自由選擇,則不同的分配方案有(    ).

(A)16種     (B)18種      (C)37種        (D)48種

試題詳情

誤解:甲工廠先派一個(gè)班去,有3種選派方法,剩下的2個(gè)班均有4種選擇,這樣共有種方案.

試題詳情

錯(cuò)因分析:顯然這里有重復(fù)計(jì)算.如:班先派去了甲工廠,班選擇時(shí)也去了甲工廠,這與班先派去了甲工廠,班選擇時(shí)也去了甲工廠是同一種情況,而在上述解法中當(dāng)作了不一樣的情況,并且這種重復(fù)很難排除.

試題詳情

正解:用間接法.先計(jì)算3個(gè)班自由選擇去何工廠的總數(shù),再扣除甲工廠無人去的情況,即:種方案.

排列組合問題雖然種類繁多,但只要能把握住最常見的原理和方法,即:“分步用乘、分類用加、有序排列、無序組合”,留心容易出錯(cuò)的地方就能夠以不變應(yīng)萬變,把排列組合學(xué)好.

 

 

試題詳情


同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 国产欧美一区二区精品忘忧草 | 99精品欧美一区二区三区 | 国产高潮呻吟久久渣男片 | 青草免费| 免费在线观看av的网站 | 日韩成人片 | 开心春色激情网 | 久久伦理中文字幕 | 91精品国产色综合久久不卡98口 | 黄色网址免费在线观看 | 久久公开视频 | 亚洲一区二区三区免费在线观看 | 国产精品久久久久久吹潮 | 一区二区三区在线播放 | 手机看片福利一区 | 日产精品久久 | 色综合天天射 | 久久久com | 国产三级| 国产精品视频一二三区 | 美女日韩一区 | 久久精品| 亚洲久视频 | 小草av | 国产一区二区影院 | 欧美一区二区三区视频在线观看 | 青青青草视频在线 | 品久久久久久久久久96高清 | 欧美久草 | 日韩一区在线播放 | 亚洲精品a| 国产在线一区二区三区四区 | 国产伦精品一区二区三区照片91 | 91精品国产乱码久久久久久久久 | 中文字幕视频在线免费观看 | 国产日韩欧美精品一区二区 | 日本福利视频 | 在线日韩 | 国产精品系列在线播放 | 中文字幕精品一区二区三区精品 | 日韩成人免费 |