(答案:C)10.如右
圖為
物體做勻變速直線運動的速度——時間圖線,
根據圖線做出的以下判斷中,正確的是( )
A.物體的加速度為5m/s2
B.物體先沿負方向運動,在t=2s后開始沿正方向運動
C.在t=2s前物體位于出發(fā)點負方向上,在t=2s后位于出發(fā)點正方向上
D.在t=2s時,物體距出發(fā)點最遠
科目:高中物理 來源: 題型:閱讀理解
查看答案和解析>>
科目:高中物理 來源:惠州市2007屆高三第二次調研考試、物理試題 題型:038
解答應寫出必要的文字說明、方程式和重要的演算步驟,只寫出最后答案的不能得分.有數值計算的題答案中必須明確寫出數值和單位.
如圖所示,水平放置的平行板電容器,原來兩板不帶電,上極板接地,它的極板長L=0.1 m,兩板間距離d=0.4 cm,有一束相同的帶電微粒以相同的初速度先后從兩板中央平行極板射入,由于重力作用微粒能落到下板上,微粒所帶電荷立即轉移到下極板且均勻分布在下極板上.設前一微粒落到下極板上時后一微粒才能開始射入兩極板間.已知微粒質量為m=2×10-6 kg,電量q=1×10-8 C,電容器電容為C=10-6 F,取g=10 m/s2.求:
(1)為使第一個微粒的落點范圍能在下板中點到緊靠邊緣的B點之內,求微粒入射的初速度v0的取值范圍.
(2)若帶電微粒以第一問中初速度v0的最小值入射,則最多能有多少個帶電微粒落到下極板上?
查看答案和解析>>
科目:高中物理 來源: 題型:閱讀理解
第七部分 熱學
熱學知識在奧賽中的要求不以深度見長,但知識點卻非常地多(考綱中羅列的知識點幾乎和整個力學——前五部分——的知識點數目相等)。而且,由于高考要求對熱學的要求逐年降低(本屆尤其低得“離譜”,連理想氣體狀態(tài)方程都沒有了),這就客觀上給奧賽培訓增加了負擔。因此,本部分只能采新授課的培訓模式,將知識點和例題講解及時地結合,爭取讓學員學一點,就領會一點、鞏固一點,然后再層疊式地往前推進。
一、分子動理論
1、物質是由大量分子組成的(注意分子體積和分子所占據空間的區(qū)別)
對于分子(單原子分子)間距的計算,氣體和液體可直接用,對固體,則與分子的空間排列(晶體的點陣)有關。
【例題1】如圖6-1所示,食鹽(NaCl)的晶體是由鈉離子(圖中的白色圓點表示)和氯離子(圖中的黑色圓點表示)組成的,離子鍵兩兩垂直且鍵長相等。已知食鹽的摩爾質量為58.5×10-3kg/mol,密度為2.2×103kg/m3,阿伏加德羅常數為6.0×1023mol-1,求食鹽晶體中兩個距離最近的鈉離子中心之間的距離。
【解說】題意所求即圖中任意一個小立方塊的變長(設為a)的倍,所以求a成為本題的焦點。
由于一摩爾的氯化鈉含有NA個氯化鈉分子,事實上也含有2NA個鈉離子(或氯離子),所以每個鈉離子占據空間為 v =
而由圖不難看出,一個離子占據的空間就是小立方體的體積a3 ,
即 a3 = =
,最后,鄰近鈉離子之間的距離l =
a
【答案】3.97×10-10m 。
〖思考〗本題還有沒有其它思路?
〖答案〗每個離子都被八個小立方體均分,故一個小立方體含有×8個離子 =
分子,所以…(此法普遍適用于空間點陣比較復雜的晶體結構。)
2、物質內的分子永不停息地作無規(guī)則運動
固體分子在平衡位置附近做微小振動(振幅數量級為0.1),少數可以脫離平衡位置運動。液體分子的運動則可以用“長時間的定居(振動)和短時間的遷移”來概括,這是由于液體分子間距較固體大的結果。氣體分子基本“居無定所”,不停地遷移(常溫下,速率數量級為102m/s)。
無論是振動還是遷移,都具備兩個特點:a、偶然無序(雜亂無章)和統計有序(分子數比率和速率對應一定的規(guī)律——如麥克斯韋速率分布函數,如圖6-2所示);b、劇烈程度和溫度相關。
氣體分子的三種速率。最可幾速率vP :f(v) = (其中ΔN表示v到v +Δv內分子數,N表示分子總數)極大時的速率,vP =
=
;平均速率
:所有分子速率的算術平均值,
=
=
;方均根速率
:與分子平均動能密切相關的一個速率,
=
=
〔其中R為普適氣體恒量,R = 8.31J/(mol.K)。k為玻耳茲曼常量,k =
= 1.38×10-23J/K 〕
【例題2】證明理想氣體的壓強P = n
,其中n為分子數密度,
為氣體分子平均動能。
【證明】氣體的壓強即單位面積容器壁所承受的分子的撞擊力,這里可以設理想氣體被封閉在一個邊長為a的立方體容器中,如圖6-3所示。
考查yoz平面的一個容器壁,P = ①
設想在Δt時間內,有Nx個分子(設質量為m)沿x方向以恒定的速率vx碰撞該容器壁,且碰后原速率彈回,則根據動量定理,容器壁承受的壓力
F ==
②
在氣體的實際狀況中,如何尋求Nx和vx呢?
考查某一個分子的運動,設它的速度為v ,它沿x、y、z三個方向分解后,滿足
v2 = +
+
分子運動雖然是雜亂無章的,但仍具有“偶然無序和統計有序”的規(guī)律,即
=
+
+
= 3
③
這就解決了vx的問題。另外,從速度的分解不難理解,每一個分子都有機會均等的碰撞3個容器壁的可能。設Δt = ,則
Nx = ·3N總 =
na3 ④
注意,這里的是指有6個容器壁需要碰撞,而它們被碰的幾率是均等的。
結合①②③④式不難證明題設結論。
〖思考〗此題有沒有更簡便的處理方法?
〖答案〗有。“命令”所有分子以相同的速率v沿+x、?x、+y、?y、+z、?z這6個方向運動(這樣造成的宏觀效果和“雜亂無章”地運動時是一樣的),則 Nx =N總 =
na3 ;而且vx = v
所以,P = =
=
=
nm
=
n
3、分子間存在相互作用力(注意分子斥力和氣體分子碰撞作用力的區(qū)別),而且引力和斥力同時存在,宏觀上感受到的是其合效果。
分子力是保守力,分子間距改變時,分子力做的功可以用分子勢能的變化表示,分子勢能EP隨分子間距的變化關系如圖6-4所示。
分子勢能和動能的總和稱為物體的內能。
二、熱現象和基本熱力學定律
1、平衡態(tài)、狀態(tài)參量
a、凡是與溫度有關的現象均稱為熱現象,熱學是研究熱現象的科學。熱學研究的對象都是有大量分子組成的宏觀物體,通稱為熱力學系統(簡稱系統)。當系統的宏觀性質不再隨時間變化時,這樣的狀態(tài)稱為平衡態(tài)。
b、系統處于平衡態(tài)時,所有宏觀量都具有確定的值,這些確定的值稱為狀態(tài)參量(描述氣體的狀態(tài)參量就是P、V和T)。
c、熱力學第零定律(溫度存在定律):若兩個熱力學系統中的任何一個系統都和第三個熱力學系統處于熱平衡狀態(tài),那么,這兩個熱力學系統也必定處于熱平衡。這個定律反映出:處在同一熱平衡狀態(tài)的所有的熱力學系統都具有一個共同的宏觀特征,這一特征是由這些互為熱平衡系統的狀態(tài)所決定的一個數值相等的狀態(tài)函數,這個狀態(tài)函數被定義為溫度。
2、溫度
a、溫度即物體的冷熱程度,溫度的數值表示法稱為溫標。典型的溫標有攝氏溫標t、華氏溫標F(F = t + 32)和熱力學溫標T(T = t + 273.15)。
b、(理想)氣體溫度的微觀解釋: =
kT (i為分子的自由度 = 平動自由度t + 轉動自由度r + 振動自由度s 。對單原子分子i = 3 ,“剛性”〈忽略振動,s = 0,但r = 2〉雙原子分子i = 5 。對于三個或三個以上的多原子分子,i = 6 。能量按自由度是均分的),所以說溫度是物質分子平均動能的標志。
c、熱力學第三定律:熱力學零度不可能達到。(結合分子動理論的觀點2和溫度的微觀解釋很好理解。)
3、熱力學過程
a、熱傳遞。熱傳遞有三種方式:傳導(對長L、橫截面積S的柱體,Q = KSΔ
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com