日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中物理 > 題目詳情
如圖6所示,一彈簧一端系在墻上O點,自由伸長到B點,今將一小物體m壓著彈簧,將彈簧壓縮到A點,然后釋放,小物體能運動到C點靜止,物體與水平地面動摩擦因數恒定.試判斷下列說法中正確的是(    )

圖6

A.物體從A到B加速度越來越小,從B到C速度越來越小

B.物體從A到B加速度越來越大,從B到C加速度不變

C.物體從A到B,先加速后減速,從B到C一直做減速運動

D.物體在B點所受合外力為零

練習冊系列答案
相關習題

科目:高中物理 來源: 題型:

(2013·北京海淀二模,20題)如圖6所示,在光滑的水平面上靜止放一質量為m的木 板B,木板表面光滑,左端固定一輕質彈簧。質量為2m的木塊A以速度v0從板的右端水平向左滑上木板B。在 木塊A與彈簧相互作用的過程中,下列判斷正確的是

A. 彈簧壓縮量最大時,B板運動速率最大

B. B板的加速度一直增大

C. 彈簧給木塊A的沖量大小為2mv0/3

D. 彈簧的最大彈性勢能為mv02/3

 

 

 

 

查看答案和解析>>

科目:高中物理 來源:2011年江蘇省宿遷市泗陽縣致遠中學高考物理模擬試卷(一)(解析版) 題型:解答題

A.選修3-3
(1)有以下說法:其中正確的是______.
A.“用油膜法估測分子的大小”實驗中油酸分子直徑等于純油酸體積除以相應油酸膜的面積
B.理想氣體在體積不變的情況下,壓強p與熱力學溫度T成正比
C.氣體分子的平均動能越大,氣體的壓強就越大
D.物理性質各向同性的一定是非晶體
E.液體的表面張力是由于液體分子間的相互作用引起的
F.控制液面上方飽和汽的體積不變,升高溫度,則達到動態平衡后該飽和汽的質量增大,密度增大,壓強也增大
G.讓一小球沿碗的圓弧型內壁來回滾動,小球的運動是可逆過程
(2)如圖甲所示,用面積為S的活塞在汽缸內封閉著一定質量的空氣,活塞上放一砝碼,活塞和砝碼的總質量為m,現對汽缸緩緩加熱使汽缸內的空氣溫度從TI升高到T2,且空氣柱的高度增加了△l,已知加熱時氣體吸收的熱量為Q,外界大氣壓強為p,問此過程中被封閉氣體的內能變化了多少?請在下面的圖乙的V-T圖上大致作出該過程的圖象(包括在圖象上標出過程的方向).
(3)一只氣球內氣體的體積為2L,密度為3kg/m3,平均摩爾質量為15g/mol,阿伏加德羅常數NA=6.02×1023mol-1,試估算這個氣球內氣體的分子個數.
B.(選修模塊3-4)
(1)下列說法中正確的是______
A.交通警通過發射超聲波測量車速,利用了波的干涉原理
B.電磁波的頻率越高,它所能攜帶的信息量就越大,所以激光可以比無線電波傳遞更多的信息
C.單縫衍射中,縫越寬,條紋越亮,衍射現象也越明顯
D.地面上測得靜止的直桿長為L,則在沿桿方向高速飛行火箭中的人測得桿長應小于L
(2)如圖所示,一彈簧振子在MN間沿光滑水平桿做簡諧運動,坐標原點O為平衡位置,MN=8cm.從小球經過圖中N點時開始計時,到第一次經過O點的時間為0.2s,則小球的振動周期為______s,振動方程的表達式為x=______cm;
(3)一列簡諧橫波在t=0時刻的波形如圖所示,質點P此時刻沿-y運動,經過0.1s第一次到達平衡位置,波速為5m/s,那么:
①該波沿______(選填“+x”或“-x”)方向傳播;
②圖中Q點(坐標為x=7.5m的點)的振動方程y=______cm;
③P點的橫坐標為x=______m.
C.選修3-5
(1)下列說法中正確的是______
A.X射線是處于激發態的原子核輻射出的方向與線圈中電流流向相同k
B.一群處于n=3能級激發態的氫原子,自發躍遷時能發出3種不同頻率的光
C.放射性元素發生一次β衰變,原子序數增加1
D.235U的半衰期約為7億年,隨地球環境的變化,半衰期可能變短
(2)下列敘述中不符合物理學史的是______
A.麥克斯韋提出了光的電磁說
B.愛因斯坦為解釋光的干涉現象提出了光子說
C.湯姆生發現了電子,并首先提出原子的核式結構模型
D.貝克勒爾通過對天然放射性的研究,發現了放射性元素釙(Pa)和鐳(Ra)
(3)兩磁鐵各固定放在一輛小車上,小車能在水平面上無摩擦地沿同一直線運動.已知甲車和磁鐵的總質量為0.5kg,乙車和磁鐵的總質量為1.0kg.兩磁鐵的N極相對.推動一下,使兩車相向運動.某時刻甲的速率為2m/s,乙的速率為3m/s,方向與甲相反.兩車運動過程中始終未相碰,則兩車最近時,乙的速度為多大?

查看答案和解析>>

科目:高中物理 來源: 題型:閱讀理解

第二部分  牛頓運動定律

第一講 牛頓三定律

一、牛頓第一定律

1、定律。慣性的量度

2、觀念意義,突破“初態困惑”

二、牛頓第二定律

1、定律

2、理解要點

a、矢量性

b、獨立作用性:ΣF → a ,ΣFx → ax 

c、瞬時性。合力可突變,故加速度可突變(與之對比:速度和位移不可突變);牛頓第二定律展示了加速度的決定式(加速度的定義式僅僅展示了加速度的“測量手段”)。

3、適用條件

a、宏觀、低速

b、慣性系

對于非慣性系的定律修正——引入慣性力、參與受力分析

三、牛頓第三定律

1、定律

2、理解要點

a、同性質(但不同物體)

b、等時效(同增同減)

c、無條件(與運動狀態、空間選擇無關)

第二講 牛頓定律的應用

一、牛頓第一、第二定律的應用

單獨應用牛頓第一定律的物理問題比較少,一般是需要用其解決物理問題中的某一個環節。

應用要點:合力為零時,物體靠慣性維持原有運動狀態;只有物體有加速度時才需要合力。有質量的物體才有慣性。a可以突變而v、s不可突變。

1、如圖1所示,在馬達的驅動下,皮帶運輸機上方的皮帶以恒定的速度向右運動。現將一工件(大小不計)在皮帶左端A點輕輕放下,則在此后的過程中(      

A、一段時間內,工件將在滑動摩擦力作用下,對地做加速運動

B、當工件的速度等于v時,它與皮帶之間的摩擦力變為靜摩擦力

C、當工件相對皮帶靜止時,它位于皮帶上A點右側的某一點

D、工件在皮帶上有可能不存在與皮帶相對靜止的狀態

解說:B選項需要用到牛頓第一定律,A、C、D選項用到牛頓第二定律。

較難突破的是A選項,在為什么不會“立即跟上皮帶”的問題上,建議使用反證法(t → 0 ,a →  ,則ΣFx   ,必然會出現“供不應求”的局面)和比較法(為什么人跳上速度不大的物體可以不發生相對滑動?因為人是可以形變、重心可以調節的特殊“物體”)

此外,本題的D選項還要用到勻變速運動規律。用勻變速運動規律和牛頓第二定律不難得出

只有當L > 時(其中μ為工件與皮帶之間的動摩擦因素),才有相對靜止的過程,否則沒有。

答案:A、D

思考:令L = 10m ,v = 2 m/s ,μ= 0.2 ,g取10 m/s2 ,試求工件到達皮帶右端的時間t(過程略,答案為5.5s)

進階練習:在上面“思考”題中,將工件給予一水平向右的初速v0 ,其它條件不變,再求t(學生分以下三組進行)——

① v0 = 1m/s  (答:0.5 + 37/8 = 5.13s)

② v0 = 4m/s  (答:1.0 + 3.5 = 4.5s)

③ v0 = 1m/s  (答:1.55s)

2、質量均為m的兩只鉤碼A和B,用輕彈簧和輕繩連接,然后掛在天花板上,如圖2所示。試問:

① 如果在P處剪斷細繩,在剪斷瞬時,B的加速度是多少?

② 如果在Q處剪斷彈簧,在剪斷瞬時,B的加速度又是多少?

解說:第①問是常規處理。由于“彈簧不會立即發生形變”,故剪斷瞬間彈簧彈力維持原值,所以此時B鉤碼的加速度為零(A的加速度則為2g)。

第②問需要我們反省這樣一個問題:“彈簧不會立即發生形變”的原因是什么?是A、B兩物的慣性,且速度v和位移s不能突變。但在Q點剪斷彈簧時,彈簧卻是沒有慣性的(沒有質量),遵從理想模型的條件,彈簧應在一瞬間恢復原長!即彈簧彈力突變為零。

答案:0 ;g 。

二、牛頓第二定律的應用

應用要點:受力較少時,直接應用牛頓第二定律的“矢量性”解題。受力比較多時,結合正交分解與“獨立作用性”解題。

在難度方面,“瞬時性”問題相對較大。

1、滑塊在固定、光滑、傾角為θ的斜面上下滑,試求其加速度。

解說:受力分析 → 根據“矢量性”定合力方向  牛頓第二定律應用

答案:gsinθ。

思考:如果斜面解除固定,上表仍光滑,傾角仍為θ,要求滑塊與斜面相對靜止,斜面應具備一個多大的水平加速度?(解題思路完全相同,研究對象仍為滑塊。但在第二環節上應注意區別。答:gtgθ。)

進階練習1:在一向右運動的車廂中,用細繩懸掛的小球呈現如圖3所示的穩定狀態,試求車廂的加速度。(和“思考”題同理,答:gtgθ。)

進階練習2、如圖4所示,小車在傾角為α的斜面上勻加速運動,車廂頂用細繩懸掛一小球,發現懸繩與豎直方向形成一個穩定的夾角β。試求小車的加速度。

解:繼續貫徹“矢量性”的應用,但數學處理復雜了一些(正弦定理解三角形)。

分析小球受力后,根據“矢量性”我們可以做如圖5所示的平行四邊形,并找到相應的夾角。設張力T與斜面方向的夾角為θ,則

θ=(90°+ α)- β= 90°-(β-α)                 (1)

對灰色三角形用正弦定理,有

 =                                        (2)

解(1)(2)兩式得:ΣF = 

最后運用牛頓第二定律即可求小球加速度(即小車加速度)

答: 。

2、如圖6所示,光滑斜面傾角為θ,在水平地面上加速運動。斜面上用一條與斜面平行的細繩系一質量為m的小球,當斜面加速度為a時(a<ctgθ),小球能夠保持相對斜面靜止。試求此時繩子的張力T 。

解說:當力的個數較多,不能直接用平行四邊形尋求合力時,宜用正交分解處理受力,在對應牛頓第二定律的“獨立作用性”列方程。

正交坐標的選擇,視解題方便程度而定。

解法一:先介紹一般的思路。沿加速度a方向建x軸,與a垂直的方向上建y軸,如圖7所示(N為斜面支持力)。于是可得兩方程

ΣFx = ma ,即Tx - Nx = ma

ΣFy = 0 , 即Ty + Ny = mg

代入方位角θ,以上兩式成為

T cosθ-N sinθ = ma                       (1)

T sinθ + Ncosθ = mg                       (2)

這是一個關于T和N的方程組,解(1)(2)兩式得:T = mgsinθ + ma cosθ

解法二:下面嘗試一下能否獨立地解張力T 。將正交分解的坐標選擇為:x——斜面方向,y——和斜面垂直的方向。這時,在分解受力時,只分解重力G就行了,但值得注意,加速度a不在任何一個坐標軸上,是需要分解的。矢量分解后,如圖8所示。

根據獨立作用性原理,ΣFx = max

即:T - Gx = max

即:T - mg sinθ = m acosθ

顯然,獨立解T值是成功的。結果與解法一相同。

答案:mgsinθ + ma cosθ

思考:當a>ctgθ時,張力T的結果會變化嗎?(從支持力的結果N = mgcosθ-ma sinθ看小球脫離斜面的條件,求脫離斜面后,θ條件已沒有意義。答:T = m 。)

學生活動:用正交分解法解本節第2題“進階練習2”

進階練習:如圖9所示,自動扶梯與地面的夾角為30°,但扶梯的臺階是水平的。當扶梯以a = 4m/s2的加速度向上運動時,站在扶梯上質量為60kg的人相對扶梯靜止。重力加速度g = 10 m/s2,試求扶梯對人的靜摩擦力f 。

解:這是一個展示獨立作用性原理的經典例題,建議學生選擇兩種坐標(一種是沿a方向和垂直a方向,另一種是水平和豎直方向),對比解題過程,進而充分領會用牛頓第二定律解題的靈活性。

答:208N 。

3、如圖10所示,甲圖系著小球的是兩根輕繩,乙圖系著小球的是一根輕彈簧和輕繩,方位角θ已知。現將它們的水平繩剪斷,試求:在剪斷瞬間,兩種情形下小球的瞬時加速度。

解說:第一步,闡明繩子彈力和彈簧彈力的區別。

(學生活動)思考:用豎直的繩和彈簧懸吊小球,并用豎直向下的力拉住小球靜止,然后同時釋放,會有什么現象?原因是什么?

結論——繩子的彈力可以突變而彈簧的彈力不能突變(胡克定律)。

第二步,在本例中,突破“繩子的拉力如何瞬時調節”這一難點(從即將開始的運動來反推)。

知識點,牛頓第二定律的瞬時性。

答案:a = gsinθ ;a = gtgθ 。

應用:如圖11所示,吊籃P掛在天花板上,與吊籃質量相等的物體Q被固定在吊籃中的輕彈簧托住,當懸掛吊籃的細繩被燒斷瞬間,P、Q的加速度分別是多少?

解:略。

答:2g ;0 。

三、牛頓第二、第三定律的應用

要點:在動力學問題中,如果遇到幾個研究對象時,就會面臨如何處理對象之間的力和對象與外界之間的力問題,這時有必要引進“系統”、“內力”和“外力”等概念,并適時地運用牛頓第三定律。

在方法的選擇方面,則有“隔離法”和“整體法”。前者是根本,后者有局限,也有難度,但常常使解題過程簡化,使過程的物理意義更加明晰。

對N個對象,有N個隔離方程和一個(可能的)整體方程,這(N + 1)個方程中必有一個是通解方程,如何取舍,視解題方便程度而定。

補充:當多個對象不具有共同的加速度時,一般來講,整體法不可用,但也有一種特殊的“整體方程”,可以不受這個局限(可以介紹推導過程)——

Σ= m1 + m2 + m3 + … + mn

其中Σ只能是系統外力的矢量和,等式右邊也是矢量相加。

1、如圖12所示,光滑水平面上放著一個長為L的均質直棒,現給棒一個沿棒方向的、大小為F的水平恒力作用,則棒中各部位的張力T隨圖中x的關系怎樣?

解說:截取隔離對象,列整體方程和隔離方程(隔離右段較好)。

答案:N = x 。

思考:如果水平面粗糙,結論又如何?

解:分兩種情況,(1)能拉動;(2)不能拉動。

第(1)情況的計算和原題基本相同,只是多了一個摩擦力的處理,結論的化簡也麻煩一些。

第(2)情況可設棒的總質量為M ,和水平面的摩擦因素為μ,而F = μMg ,其中l<L ,則x<(L-l)的右段沒有張力,x>(L-l)的左端才有張力。

答:若棒仍能被拉動,結論不變。

若棒不能被拉動,且F = μMg時(μ為棒與平面的摩擦因素,l為小于L的某一值,M為棒的總質量),當x<(L-l),N≡0 ;當x>(L-l),N = 〔x -〈L-l〉〕。

應用:如圖13所示,在傾角為θ的固定斜面上,疊放著兩個長方體滑塊,它們的質量分別為m1和m2 ,它們之間的摩擦因素、和斜面的摩擦因素分別為μ1和μ2 ,系統釋放后能夠一起加速下滑,則它們之間的摩擦力大小為:

A、μ1 m1gcosθ ;    B、μ2 m1gcosθ ;

C、μ1 m2gcosθ ;    D、μ1 m2gcosθ ;

解:略。

答:B 。(方向沿斜面向上。)

思考:(1)如果兩滑塊不是下滑,而是以初速度v0一起上沖,以上結論會變嗎?(2)如果斜面光滑,兩滑塊之間有沒有摩擦力?(3)如果將下面的滑塊換成如圖14所示的盒子,上面的滑塊換成小球,它們以初速度v0一起上沖,球應對盒子的哪一側內壁有壓力?

解:略。

答:(1)不會;(2)沒有;(3)若斜面光滑,對兩內壁均無壓力,若斜面粗糙,對斜面上方的內壁有壓力。

2、如圖15所示,三個物體質量分別為m1 、m2和m3 ,帶滑輪的物體放在光滑水平面上,滑輪和所有接觸面的摩擦均不計,繩子的質量也不計,為使三個物體無相對滑動,水平推力F應為多少?

解說:

此題對象雖然有三個,但難度不大。隔離m2 ,豎直方向有一個平衡方程;隔離m1 ,水平方向有一個動力學方程;整體有一個動力學方程。就足以解題了。

答案:F =  。

思考:若將質量為m3物體右邊挖成凹形,讓m2可以自由擺動(而不與m3相碰),如圖16所示,其它條件不變。是否可以選擇一個恰當的F′,使三者無相對運動?如果沒有,說明理由;如果有,求出這個F′的值。

解:此時,m2的隔離方程將較為復雜。設繩子張力為T ,m2的受力情況如圖,隔離方程為:

 = m2a

隔離m,仍有:T = m1a

解以上兩式,可得:a = g

最后用整體法解F即可。

答:當m1 ≤ m2時,沒有適應題意的F′;當m1 > m2時,適應題意的F′=  。

3、一根質量為M的木棒,上端用細繩系在天花板上,棒上有一質量為m的貓,如圖17所示。現將系木棒的繩子剪斷,同時貓相對棒往上爬,但要求貓對地的高度不變,則棒的加速度將是多少?

解說:法一,隔離法。需要設出貓爪抓棒的力f ,然后列貓的平衡方程和棒的動力學方程,解方程組即可。

法二,“新整體法”。

據Σ= m1 + m2 + m3 + … + mn ,貓和棒的系統外力只有兩者的重力,豎直向下,而貓的加速度a1 = 0 ,所以:

( M + m )g = m·0 + M a1 

解棒的加速度a1十分容易。

答案:g 。

四、特殊的連接體

當系統中各個體的加速度不相等時,經典的整體法不可用。如果各個體的加速度不在一條直線上,“新整體法”也將有一定的困難(矢量求和不易)。此時,我們回到隔離法,且要更加注意找各參量之間的聯系。

解題思想:抓某個方向上加速度關系。方法:“微元法”先看位移關系,再推加速度關系。、

1、如圖18所示,一質量為M 、傾角為θ的光滑斜面,放置在光滑的水平面上,另一個質量為m的滑塊從斜面頂端釋放,試求斜面的加速度。

解說:本題涉及兩個物體,它們的加速度關系復雜,但在垂直斜面方向上,大小是相等的。對兩者列隔離方程時,務必在這個方向上進行突破。

(學生活動)定型判斷斜面的運動情況、滑塊的運動情況。

位移矢量示意圖如圖19所示。根據運動學規律,加速度矢量a1和a2也具有這樣的關系。

(學生活動)這兩個加速度矢量有什么關系?

沿斜面方向、垂直斜面方向建x 、y坐標,可得:

a1y = a2y             ①

且:a1y = a2sinθ     ②

隔離滑塊和斜面,受力圖如圖20所示。

對滑塊,列y方向隔離方程,有:

mgcosθ- N = ma1y     ③

對斜面,仍沿合加速度a2方向列方程,有:

Nsinθ= Ma2          ④

解①②③④式即可得a2 。

答案:a2 =  。

(學生活動)思考:如何求a1的值?

解:a1y已可以通過解上面的方程組求出;a1x只要看滑塊的受力圖,列x方向的隔離方程即可,顯然有mgsinθ= ma1x ,得:a1x = gsinθ 。最后據a1 = 求a1 。

答:a1 =  。

2、如圖21所示,與水平面成θ角的AB棒上有一滑套C ,可以無摩擦地在棒上滑動,開始時與棒的A端相距b ,相對棒靜止。當棒保持傾角θ不變地沿水平面勻加速運動,加速度為a(且a>gtgθ)時,求滑套C從棒的A端滑出所經歷的時間。

解說:這是一個比較特殊的“連接體問題”,尋求運動學參量的關系似乎比動力學分析更加重要。動力學方面,只需要隔離滑套C就行了。

(學生活動)思考:為什么題意要求a>gtgθ?(聯系本講第二節第1題之“思考題”)

定性繪出符合題意的運動過程圖,如圖22所示:S表示棒的位移,S1表示滑套的位移。沿棒與垂直棒建直角坐標后,S1x表示S1在x方向上的分量。不難看出:

S1x + b = S cosθ                   ①

設全程時間為t ,則有:

S = at2                          ②

S1x = a1xt2                        ③

而隔離滑套,受力圖如圖23所示,顯然:

mgsinθ= ma1x                       ④

解①②③④式即可。

答案:t = 

另解:如果引進動力學在非慣性系中的修正式 Σ* = m (注:*為慣性力),此題極簡單。過程如下——

以棒為參照,隔離滑套,分析受力,如圖24所示。

注意,滑套相對棒的加速度a是沿棒向上的,故動力學方程為:

F*cosθ- mgsinθ= ma            (1)

其中F* = ma                      (2)

而且,以棒為參照,滑套的相對位移S就是b ,即:

b = S = a t2                 (3)

解(1)(2)(3)式就可以了。

第二講 配套例題選講

教材范本:龔霞玲主編《奧林匹克物理思維訓練教材》,知識出版社,2002年8月第一版。

例題選講針對“教材”第三章的部分例題和習題。

查看答案和解析>>

科目:高中物理 來源: 題型:

如圖6所示,在光滑的水平面上靜止放一質量為m的木 板B,木板表面光滑,左端固定一輕質彈簧。質量為2m的木塊A以速度v0從板的右端水平向左滑上木板B。在 木塊A與彈簧相互作用的過程中,下列判斷正確的是

A. 彈簧壓縮量最大時,B板運動速率最大

B. S板的加速度一直增大

C. 彈簧給木塊A的沖量大小為2mv0/3

D. 彈簧的最大彈性勢能為mv02/3

 

 

 

 

 

 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 91禁在线观看 | 久操视频在线观看 | 三级视频网 | 夜间福利视频 | 欧美日在线 | 国产高清网站 | www.日本黄色 | 国产三级在线观看视频 | 日本特级淫片 | 亚洲高清免费视频 | 久久久久久毛片 | 国产精品一区在线播放 | 在线播放毛片 | 久久av红桃一区二区小说 | 婷色 | 日本久久视频 | 91网站在线免费观看 | 日韩精品一二区 | 国产精品不卡 | 国产欧美一区二区精品性色超碰 | 中文字幕在线视频播放 | 久久精彩 | 欧美视频免费在线观看 | 97色婷婷 | 日韩精品一区二区三区免费视频 | 亚洲三级网| 国产黄色大片 | 免费视频a | 国产日韩一区二区 | 自拍视频一区 | www.狠狠操 | 亚洲欧美日韩一区二区三区四区 | 男女视频网站 | 日韩亚洲欧美在线观看 | 欧美a视频 | 国产无遮挡又黄又爽免费网站 | 久久久夜| 无套内谢的新婚少妇国语播放 | 精品国产一二三 | 日韩在线视频播放 | 五月天一区二区 |