科目: 來源: 題型:
【題目】已知都是各項不為零的數列,且滿足
其中
是數列
的前
項和,
是公差為
的等差數列.
(1)若數列是常數列,
,
,求數列
的通項公式;
(2)若是不為零的常數),求證:數列
是等差數列;
(3)若(
為常數,
),
.求證:對任意
的恒成立.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓
的中心為坐標原點
焦點在
軸上,右頂點
到右焦點的距離與它到右準線的距離之比為
.
(1)求橢圓的標準方程;
(2)若是橢圓
上關于
軸對稱的任意兩點,設
,連接
交橢圓
于另一點
.求證:直線
過定點
并求出點
的坐標;
(3)在(2)的條件下,過點的直線交橢圓
于
兩點,求
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某房地產開發商在其開發的某小區前修建了一個弓形景觀湖.如圖,該弓形所在的圓是以為直徑的圓,且
米,景觀湖邊界
與
平行且它們間的距離為
米.開發商計劃從
點出發建一座景觀橋(假定建成的景觀橋的橋面與地面和水面均平行),橋面在湖面上的部分記作
.設
.
(1)用表示線段
并確定
的范圍;
(2)為了使小區居民可以充分地欣賞湖景,所以要將的長度設計到最長,求
的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,圓臺的軸截面為等腰梯形
,
圓臺
的側面積為
.若點
分別為圓
上的動點,且點
在平面
的同側.
(1)求證:;
(2)若,則當三棱錐
的體積取最大值時,求
與平面
所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】改革開放以來,中國快遞行業持續快速發展,快遞業務量從上世紀年代的
萬件提升到2018年的
億件,快遞行業的發展也給我們的生活帶來了很大便利.已知某市某快遞點的收費標準為:首重(重量小于等于
)收費
元,續重
元
(不足
按
算). (如:一個包裹重量為
則需支付首付
元,續重
元,一共
元快遞費用)
(1)若你有三件禮物重量分別為
,要將三個禮物分成兩個包裹寄出(如:
合為一個包裹,
一個包裹),那么如何分配禮物,使得你花費的快遞費最少?
(2)為了解該快遞點2019年的攬件情況,在2019年內隨機抽查了天的日攬收包裹數(單位:件),得到如下表格:
包裹數(單位:件) | ||||
天數(天) |
現用這天的日攬收包裹數估計該快遞點2019年的日攬收包裏數.若從2019年任取
天,記這
天中日攬收包裹數超過
件的天數為隨機變量
求
的分布列和期望
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,圓臺的軸截面為等腰梯形
,
圓臺
的側面積為
.若點
分別為圓
上的動點,且點
在平面
的同側.
(1)求證:;
(2)若,則當三棱錐
的體積取最大值時,求
與平面
所成角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com