科目: 來源: 題型:
【題目】如圖,在四棱錐中,底面
是梯形,
,
,
是正三角形,
為
的中點,平面
平面
.
(1)求證:平面
;
(2)在棱上是否存在點
,使得二面角
的余弦值為
?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某學生為了測試煤氣灶燒水如何節省煤氣的問題設計了一個實驗,并獲得了煤氣開關旋鈕旋轉的弧度數與燒開一壺水所用時間
的一組數據,且作了一定的數據處理(如下表),得到了散點圖(如下圖).
表中,
.
(1)根據散點圖判斷,與
哪一個更適宜作燒水時間
關于開關旋鈕旋轉的弧度數
的回歸方程類型?(不必說明理由)
(2)根據判斷結果和表中數據,建立關于
的回歸方程;
(3)若單位時間內煤氣輸出量與旋轉的弧度數
成正比,那么,利用第(2)問求得的回歸方程知
為多少時,燒開一壺水最省煤氣?
附:對于一組數據,其回歸直線
的斜率和截距的最小二乘法估計值分別為
,
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標系與參數方程:在平面直角坐標系中,曲線
:
(
為參數),在以平面直角坐標系的原點為極點、
軸的正半軸為極軸,且與平面直角坐標系
取相同單位長度的極坐標系中,曲線
:
.
(1)求曲線的普通方程以及曲線
的平面直角坐標方程;
(2)若曲線上恰好存在三個不同的點到曲線
的距離相等,求這三個點的極坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知的直角頂點
在
軸上,點
為斜邊
的中點,且
平行于
軸.
(Ⅰ)求點的軌跡方程;
(Ⅱ)設點的軌跡為曲線
,直線
與
的另一個交點為
.以
為直徑的圓交
軸于
即此圓的圓心為
,
求
的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】“搜索指數”是網民通過搜索引擎,以每天搜索關鍵詞的次數為基礎所得到的統計指標.“搜索指數”越大,表示網民對該關鍵詞的搜索次數越多,對該關鍵詞相關的信息關注度也越高.下圖是2017年9月到2018年2月這半年中,某個關鍵詞的搜索指數變化的走勢圖.
根據該走勢圖,下列結論正確的是( )
A. 這半年中,網民對該關鍵詞相關的信息關注度呈周期性變化
B. 這半年中,網民對該關鍵詞相關的信息關注度不斷減弱
C. 從網民對該關鍵詞的搜索指數來看,去年10月份的方差小于11月份的方差
D. 從網民對該關鍵詞的搜索指數來看,去年12月份的平均值大于今年1月份的平均值
查看答案和解析>>
科目: 來源: 題型:
【題目】某城市的公交公司為了方便市民出行,科學規劃車輛投放,在一個人員密集流動地段增設一個起點站,為了研究車輛發車間隔時間與乘客等候人數
之間的關系,經過調查得到如下數據:
間隔時間/分 | 10 | 11 | 12 | 13 | 14 | 15 |
等候人數y/人 | 23 | 25 | 26 | 29 | 28 | 31 |
調查小組先從這組數據中選取
組數據求線性回歸方程,再用剩下的
組數據進行檢驗.檢驗方法如下:先用求得的線性回歸方程計算間隔時間對應的等候人數
,再求
與實際等候人數
的差,若差值的絕對值都不超過
,則稱所求方程是“恰當回歸方程”.
(1)從這組數據中隨機選取
組數據后,求剩下的
組數據的間隔時間不相鄰的概率;
(2)若選取的是后面組數據,求
關于
的線性回歸方程
,并判斷此方程是否是“恰當回歸方程”;
(3)為了使等候的乘客不超過人,試用(2)中方程估計間隔時間最多可以設置為多少(精確到整數)分鐘.
附:對于一組數據,
,……,
,其回歸直線
的斜率和截距的最小二乘估計分別為:
,
.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知頂點是坐標原點的拋物線的焦點
在
軸正半軸上,圓心在直線
上的圓
與
軸相切,且
關于點
對稱.
(1)求和
的標準方程;
(2)過點的直線
與
交于
,與
交于
,求證:
.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數f(x)=exsinx,g(x)為f(x)的導函數,
(1)求f(x)的單調區間;
(2)當x∈[,π],證明:f(x)+g(x)(π﹣x)≥0.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com