日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

已知函數(shù)f(x)=ax+lnx,a∈R
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)對(duì)于曲線(xiàn)上的不同兩點(diǎn)P1(x1,y1),P2(x2,y2),如果存在曲線(xiàn)上的點(diǎn)Q(x,y),且x1<x<x2,使得曲線(xiàn)在點(diǎn)Q處的切線(xiàn)?∥P1P2,則稱(chēng)?為弦P1P2的伴隨切線(xiàn).特別地,當(dāng)x=λx1+(1-λ)x2(0<λ<1)時(shí),又稱(chēng)?為P1P2的λ-伴隨切線(xiàn).
(ⅰ)求證:曲線(xiàn)y=f(x)的任意一條弦均有伴隨切線(xiàn),并且伴隨切線(xiàn)是唯一的;
(ⅱ)是否存在曲線(xiàn)C,使得曲線(xiàn)C的任意一條弦均有伴隨切線(xiàn)?若存在,給出一條這樣的曲線(xiàn),并證明你的結(jié)論;若不存在,說(shuō)明理由.
【答案】分析:(I)先求f(x)的導(dǎo)數(shù),再對(duì)參數(shù)a進(jìn)行討論,利用導(dǎo)數(shù)函數(shù)值的正負(fù)情況研究原函數(shù)的極值;
(Ⅱ)設(shè)P1(x1,f(x1)),P2(x2,f(x2))是曲線(xiàn)y=f(x)上的任意兩點(diǎn),要證明P1,P2有伴隨切線(xiàn),只需證明存在點(diǎn)Q(x,f(x)),x1<x<x2,使得,且點(diǎn)Q不在P1P2上.
解答:解:(Ⅰ)(2分)
當(dāng)a≥0(0,+∞),f'(x)>0,函數(shù)f(x)在內(nèi)是增函數(shù),
∴函數(shù)f(x)沒(méi)有極值.(3分)
當(dāng)a<0時(shí),令f'(x)=0,得
當(dāng)x變化時(shí),f'(x)與f(x)變化情況如下表:

∴當(dāng)時(shí),f(x)取得極大值
綜上,當(dāng)a≥0時(shí),f(x)沒(méi)有極值;
當(dāng)a<0時(shí),f(x)的極大值為,沒(méi)有極小值.(5分)

(Ⅱ)(ⅰ)設(shè)P1(x1,f(x1)),P2(x2,f(x2))是曲線(xiàn)y=f(x)上的任意兩點(diǎn),
要證明P1,P2有伴隨切線(xiàn),只需證明存在點(diǎn)Q(x,f(x)),x1<x<x2
使得,且點(diǎn)Q不在P1P2上.(7分)
,即證存在x∈(x1,x2),使得
即xlnx2-xlnx1+x1-x2=0成立,且點(diǎn)Q不在P1P2上.(8分)
以下證明方程xlnx2-xlnx1+x1-x2=0在(x1,x2)內(nèi)有解.
設(shè)F(x)=xlnx2-xlnx1+x1-x2,0<x<x2
則F(x1)=x1lnx2-x1lnx1+x1-x2
記g(x)=xlnx2-xlnx+x-x2,0<x<x2
∴g'(x)=lnx2-lnx>0,
∴g(x)在(0,x2)內(nèi)是增函數(shù),
∴F(x1)=g(x1)<g(x2)=0.(9分)
同理F(x2)>0.∴F(x1)F(x2)<0.
∴方程xlnx2-xlnx1+x1-x2=0在(x1,x2)內(nèi)有解x=x.(10分)
又對(duì)于函數(shù)g(x)=xlnx2-xlnx+x-x2
∵0<x1<x<x2,∴g(x)=xlnx2-xlnx+x-x2<g(x2)=0,
可知,即點(diǎn)Q不在P1P2上.
又F(x)=(lnx2-lnx1)x+x1-x2在(x1,x2)內(nèi)是增函數(shù),
∴方程xlnx2-xlnx1+x1-x2=0在(x1,x2)內(nèi)有唯一解.
綜上,曲線(xiàn)y=f(x)上任意一條弦均有伴隨切線(xiàn),并且伴隨切線(xiàn)是唯一的.
點(diǎn)評(píng):本題主要考查利用導(dǎo)數(shù)研究函數(shù)的極值,是一道創(chuàng)新型題,屬于難度系數(shù)較大的題目.近幾年的高考命題,由知識(shí)立意向能力立意轉(zhuǎn)化,強(qiáng)化創(chuàng)新意識(shí)的考查,設(shè)計(jì)了一些“對(duì)新穎的信息、情景和設(shè)問(wèn),選擇有效的方法和手段收集信息,綜合與靈活地應(yīng)用所學(xué)數(shù)學(xué)知識(shí)、思想和方法,進(jìn)行獨(dú)立思考、探索和研究,提出解決問(wèn)題的思路,創(chuàng)造性的解決問(wèn)題”的創(chuàng)新題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線(xiàn)的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過(guò)原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過(guò)點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿(mǎn)足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 中文字幕 国产精品 | 精品一级 | 国产99久久 | 日韩91精品 | 欧美日韩亚洲三区 | 亚洲 中文 欧美 日韩在线观看 | 欧美成人小视频 | 久久之久久 | 国产精品成人一区二区三区夜夜夜 | 久久成人综合网 | 国产精品久久久久影院色老大 | av在线播放网址 | 国产精品久久久久久 | 欧美在线资源 | 黄色网址免费大全 | 北条麻妃一区二区三区在线观看 | 免费的黄色网址 | 日韩在线视频免费看 | 久久国产精品成人免费观看的软件 | 国产色播av在线 | 日韩精品免费一区二区夜夜嗨 | 国产精品久久久久久久电影 | 在线观看日韩精品 | 99福利视频 | 日韩在线影院 | 久久久成人av | 精品91在线视频 | 国产精品一区不卡 | 国产精品视频在线观看 | 黄色精品视频 | 亚洲第一性理论片 | 日韩精品久久久久久 | 欧美二区视频 | www久久久| 在线播放一区二区三区 | 亚洲无限乱码一二三四麻 | 国产精品婷婷午夜在线观看 | www日本xxx| 国产一区二区久久 | 欧美国产日韩在线 | 日韩欧美高清 |