【題目】已知函數.
(1)求函數f(x)在[0,π]上的單調遞減區間;
(2)在銳角△ABC的內角A,B,C所對邊為a,b,c,已知f(A)=﹣1,a=2,求△ABC的面積的最大值.
科目:高中數學 來源: 題型:
【題目】中國農業銀行廣元分行發行“金穗廣元·劍門關旅游卡”是以“游廣元、知廣元、愛廣元共享和諧廣元”為主題活動的一項經濟性和公益性相結合的重大舉措,以最優惠的價格惠及廣元戶籍市民、浙江及黑龍江授建省群眾、省內援建市市民,凡上述對象均可辦理此卡,本人憑此卡及本人身份證一年內(期滿后可重新充值辦理)在廣元市范圍內可無限次游覽所有售門票景區景點,如:劍門關、朝天明月峽、旺蒼鼓城山—七里峽、青川唐家河、廣元皇澤寺、蒼溪梨博園、昭化古城等,現有浙江及黑龍江援建省群眾甲乙兩人到廣元旅游(同游),第一天他們游覽了劍門關、朝天明月峽,第二天他們準備從上面剩下的5個景點中選兩個景點游覽,則第二天游覽青川唐家河的概率是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】新生兒某疾病要接種三次疫苗免疫(即0、1、6月齡),假設每次接種之間互不影響,每人每次接種成功的概率相等為了解新生兒該疾病疫苗接種劑量與接種成功之間的關系,現進行了兩種接種方案的臨床試驗:10μg/次劑量組與20μg/次劑量組,試驗結果如下:
接種成功 | 接種不成功 | 總計(人) | |
10μg/次劑量組 | 900 | 100 | 1000 |
20μg/次劑量組 | 973 | 27 | 1000 |
總計(人) | 1873 | 127 | 2000 |
(1)根據數據說明哪種方案接種效果好?并判斷能否有99.9%的把握認為該疾病疫苗接種成功與兩種接種方案有關?
(2)以頻率代替概率,若選用接種效果好的方案,參與該試驗的1000人的成功人數比此劑量只接種一次的成功人數平均提高多少人.
參考公式:,其中
參考附表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某客戶考察了一款熱銷的凈水器,使用壽命為十年,改款凈水器為三級過濾,每一級過濾都由核心部件濾芯來實現.在使用過程中,一級濾芯需要不定期更換,其中每更換個一級濾芯就需要更換
個二級濾芯,三級濾芯無需更換.其中一級濾芯每個
元,二級濾芯每個
元.記一臺凈水器在使用期內需要更換的二級濾芯的個數構成的集合為
.如圖是根據
臺該款凈水器在十年使用期內更換的一級濾芯的個數制成的柱狀圖.
(1)結合圖,寫出集合;
(2)根據以上信息,求出一臺凈水器在使用期內更換二級濾芯的費用大于元的概率(以
臺凈水器更換二級濾芯的頻率代替
臺凈水器更換二級濾芯發生的概率);
(3)若在購買凈水器的同時購買濾芯,則濾芯可享受折優惠(使用過程中如需再購買無優惠).假設上述
臺凈水器在購機的同時,每臺均購買
個一級濾芯、
個二級濾芯作為備用濾芯(其中
,
),計算這
臺凈水器在使用期內購買濾芯所需總費用的平均數.并以此作為決策依據,如果客戶購買凈水器的同時購買備用濾芯的總數也為
個,則其中一級濾芯和二級濾芯的個數應分別是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平行四邊形中,
過
點作
的垂線交
的延長線于點
,
.連結
交
于點
,如圖1,將
沿
折起,使得點
到達點
的位置.如圖2.
證明:直線
平面
若
為
的中點,
為
的中點,且平面
平面
求三棱錐
的體積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com