【題目】已知,
.
(1)當時,
為增函數(shù),求實數(shù)
的取值范圍;
(2)設函數(shù),若不等式
對
恒成立,求實數(shù)
的取值范圍.
【答案】(1)(2)
【解析】試題分析:(1)作差,求導,利用導函數(shù)非負恒成立轉化為不等式恒成立問題,再分離參數(shù),將問題轉化為利用導數(shù)研究函數(shù)的最值問題;(2)作差構造函數(shù),求導,利用導函數(shù)的符號變換確定導數(shù)的單調性和最值.
試題解析:(1)∵,∴
.
∵時
為增函數(shù),∴
對
恒成立,即
.
令,
,則
,令
解得
.
∴在
單減;
單增,∵
,
,∴
.
(2)∵對
恒成立,令
得
,
令,則
,
,則
,
令,則
,
則在
單增,
單減;
,故
對
恒成立.
∴在
單減,∵
,無論
在
有無零點,
在
上的最小值只可能為
或
,
要恒成立,∴
且
,∴
.
法二: ,即
,令
,
,
令得
,∴
在
單增;
單減,
又∵有唯一零點
,所以可作出函數(shù)
的示意圖,
要滿足對
恒成立,只需
解得
.
科目:高中數(shù)學 來源: 題型:
【題目】在扶貧活動中,為了盡快脫貧(無債務)致富,企業(yè)甲將經營狀況良好的某種消費品專賣店以5.8萬元的優(yōu)惠價格轉讓給了尚有5萬元無息貸款沒有償還的小型企業(yè)乙,并約定從該店經營的利潤中,首先保證企業(yè)乙的全體職工每月最低生活費的開支3 600元后,逐步償還轉讓費(不計息).在甲提供的資料中:①這種消費品的進價為每件14元;②該店月銷量Q(百件)與銷量價格P(元)的關系如圖所示;③每月需各種開支2 000元.
(1)當商品的價格為每件多少元時,月利潤扣除職工最低生活費的余額最大?并求最大余額;
(2)企業(yè)乙只依靠該店,最早可望在幾年后脫貧?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量,向量
,函數(shù)
.
(I)求單調遞減區(qū)間;
(II)已知分別為
內角
的對邊,
為銳角,
,且
恰是
在
上的最大值,求
和
的面積
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P—ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點.
(1) 證明:AE⊥平面PCD;
(2) 求PB和平面PAD所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+bx為偶函數(shù),數(shù)列{an}滿足an+1=2f(an-1)+1,且a1=3,an>1.
(1)設bn=log2(an-1),證明:數(shù)列{bn+1}為等比數(shù)列;
(2)設cn=nbn,求數(shù)列{cn}的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐PABCD中,側面PAB⊥底面ABCD,底面ABCD為矩形,PA=PB,O為AB的中點,OD⊥PC.
(1)求證:OC⊥PD;
(2)若PD與平面PAB所成的角為30°,求二面角DPCB的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點P(2,2),圓C:x2+y2-8y=0,過點P的動直線l與圓C交于A,B兩點,線段AB的中點為M,O為坐標原點.
(1)求M的軌跡方程;
(2)當|OP|=|OM|時,求l的方程及△POM的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動點P到定點F(1,0)和到直線x=2的距離之比為,設動點P的軌跡為曲線E,過點F作垂直于x軸的直線與曲線E相交于A,B兩點,直線l:y=mx+n與曲線E交于C,D兩點,與線段AB相交于一點(與A,B不重合).
(1)求曲線E的方程;
(2)當直線l與圓x2+y2=1相切時,四邊形ABCD的面積是否有最大值?若有,求出其最大值及對應的直線l的方程;若沒有,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)f(x)=x2+ax+b(a,b∈R)的定義域為[-1,1],且|f(x)|的最大值為M.
(1)證明:|1+b|≤M;
(2)證明:M≥.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com