分析:根據題目給出的角α和β的范圍,求出45°-α和135°+β的范圍,然后根據給出cos(45°-α)與sin(135°+β)的值求出對應的異名三角函數值,把要求的sin(α+β)和cos(α-β)拆配成sin(α+β)=-cos[(135°+β)-(45°-α)]和sin(α+β)=-cos[(135°+β)-(45°-α)]求解.
解答:解∵0°<β<45°<α<135°,
∴-90°<45°-α<0°,135°<135+β<180°
∵
cos(45°-α)=,∴
sin(45°-α)=-,
∵
sin(135°+β)=,∴
cos(135°+β)=-∴sin(α+β)=-cos[(135°+β)-(45°-α)]
=-[cos(135°+β)cos(45°-α)+sin(135°+β)sin(45°-α)]
=
-[(-)+(-)]=cos(α-β)=-cos[(135°+β)+(45°-α)]
=[cos(135°+β)cos(45°-α)-sin(135°+β)sin(45°-α)]
=-
[(-)-(-)]=
點評:本題考查了兩角和與差的正余弦函數,訓練了三角函數求值的拆配角方法,解答此題的關鍵是如何正確把要求三角函數值的角拆配成已知三角函數值的角,解答時一定要注意角的范圍.