【題目】在極坐標系中,圓C的極坐標方程為: .以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線
的參數方程為:
(
為參數).
(1)求圓C的直角坐標方程和直線l的普通方程;
(2)當θ∈(0,π)時,求直線l與圓C的公共點的極坐標.
科目:高中數學 來源: 題型:
【題目】以下四個命題中:
①某地市高三理科學生有15000名,在一次調研測試中,數學成績 服從正態分布
,已知
,若按成績分層抽樣的方式抽取100份試卷進行分析,則應從120分以上(包括120分)的試卷中抽取
份;
②已知命題 ,則
:
;
③在 上隨機取一個數
,能使函數
在
上有零點的概率為
;
④設 ,則“
”是“
”的充要條件.
其中真命題的序號為.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系,已知點A的極坐標為( ,
),直線l的極坐標方程為ρcos(θ﹣
)=a,且點A在直線l上,
(1)求a的值及直線l的直角坐標方程;
(2)圓C的參數方程為 (α為參數),試判斷直線l與圓C的位置關系.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設是雙曲線
上一點,
,
分別是雙曲線左、右兩個焦點,若
,則
等于( )
A. 1 B. 17 C. 1或17 D. 以上答案均不對
【答案】B
【解析】根據雙曲線的定義得到 根據雙曲線的焦半徑的范圍得到
故結果為17.
故答案為:B。
【題型】單選題
【結束】
10
【題目】某中學學生會為了調查愛好游泳運動與性別是否有關,通過隨機詢問110名性別不同的高中生是否愛好游泳運動得到如下的列聯表:由并參照附表,得到的正確結論是( )
A. 在犯錯誤的概率不超過的前提下,認為“愛好游泳運動與性別有關”
B. 在犯錯誤的概率不超過的前提下,認為“愛好游泳運動與性別無關”
C. 有的把握認為“愛好游泳運動與性別有關”
D. 有的把握認為“愛好游泳運動與性別無關”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a∈R,函數f(x)=ln(x+a)﹣x,曲線y=f(x)與x軸相切. (Ⅰ)求f(x)的單調區間;
(Ⅱ)是否存在實數m使得 恒成立?若存在,求實數m的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(a>0,a≠1,m≠﹣1),是定義在(﹣1,1)上的奇函數.
(I)求f(0)的值和實數m的值;
(II)當m=1時,判斷函數f(x)在(﹣1,1)上的單調性,并給出證明;
(III)若且f(b﹣2)+f(2b﹣2)>0,求實數b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】最新公布的《道路交通安全法》和《道路交通安全法實施條例》對車速、安全車距以及影響駕駛人反應快慢等因素均有詳細規定,這些規定說到底主要與剎車距離有關,剎車距離是指從駕駛員發現障礙到制動車輛,最后完全停止所行駛的距離,即:剎車距離=反應距離+制動距離,反應距離=反應時間×速率,制動距離與速率的平方成正比,某反應時間為的駕駛員以
的速率行駛,遇緊急情況,汽車的剎車距離為
.
()試將剎車距離
表示為速率
的函數.
()若該駕駛員駕駛汽車在限速為
的公路上行駛,遇緊急情況,汽車的剎車距離為
,試問該車是否超速?請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com