分析 根據題意,由于函數f(x)是定義在R上的奇函數,則有f(0)=0,代入數據,計算可得a的值,對f(x)的表達式變形,用作差法判斷函數單調性即可.
解答 解:∵函數$f(x)=\frac{{{2^x}-a}}{{{2^x}+a}}$為奇函數,實數a>0,
∴有f(0)=0,即$\frac{1-a}{1+a}$=0,解可得a=1,∴f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$;
f(x)=1-$\frac{2}{{2}^{x}+1}$
理由:設x1<x2,
則f(x1)-f(x2)=$\frac{2({2}^{{x}_{1}}-{2}^{{x}_{2}})}{({2}^{{x}_{1}}+1)({2}^{{x}_{2}}+1)}$,
∵x1<x2,∴f(x1)-f(x2)<0,
∴f(x)是增函數.
點評 本題考查函數的單調性、奇偶性,考查學生分析解決問題的能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $m≤\frac{3}{2}\;,\;\;n=\frac{5}{2}$ | B. | m≤3,n=2 | C. | $m>\frac{3}{2}$ | D. | m>3,n=2 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com