【題目】在四棱錐中,底面
是平行四邊形,
,側(cè)面
底面
,
,
,
,
分別為
,
的中點(diǎn),過(guò)
的平面與面
交于
,
兩點(diǎn).
(1)求證:;
(2)求證:平面平面
;
(3)設(shè),當(dāng)
為何值時(shí)四棱錐
的體積等于
,求
的值.
【答案】(1)見解析;(2)見解析;(3)
【解析】
(1)先證明,從而得到線面平行,進(jìn)而得到
;
(2)利用面面垂直得到線面垂直,進(jìn)而得到,結(jié)合平行四邊形的特點(diǎn)可得
,從而得到
平面
,可證結(jié)論;
(3)利用體積可得幾何體的高,利用高之比可得.
(1)在平行四邊形中 ,由
,
分別為
,
的中點(diǎn),得
,
∵平面
,
平面
,∴
平面
,
過(guò)的平面
與面
交于
,∴
.
(2)在平行四邊形中,∵
,
,∴
即有
,由(1)得
,∴
.
∵側(cè)面底面
,且
,平面
平面
,
且面
,∴
底面
,
又∵底面
,∴
,
又∵,
平面
,
平面
,
∴平面
,∴
平面
,∴平面
平面
.
(3)由題得,設(shè)四棱錐
的高為h,∴
,∴
,
∵,∴
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一年之計(jì)在于春,一日之計(jì)在于晨,春天是播種的季節(jié),是希望的開端.某種植戶對(duì)一塊地的個(gè)坑進(jìn)行播種,每個(gè)坑播3粒種子,每粒種子發(fā)芽的概率均為
,且每粒種子是否發(fā)芽相互獨(dú)立.對(duì)每一個(gè)坑而言,如果至少有兩粒種子發(fā)芽,則不需要進(jìn)行補(bǔ)播種,否則要補(bǔ)播種.
(1)當(dāng)取何值時(shí),有3個(gè)坑要補(bǔ)播種的概率最大?最大概率為多少?
(2)當(dāng)時(shí),用
表示要補(bǔ)播種的坑的個(gè)數(shù),求
的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),把函數(shù)
的圖象向右平移
個(gè)單位,再把圖象上各點(diǎn)的橫坐標(biāo)縮小到原來(lái)的一半,縱坐標(biāo)不變,得到函數(shù)
的圖象,當(dāng)
時(shí),方程
恰有兩個(gè)不同的實(shí)根,則實(shí)數(shù)
的取值范圍為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為中心,以坐標(biāo)軸為對(duì)稱軸的橢圓C經(jīng)過(guò)點(diǎn)M(2,1),N(,-
).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)經(jīng)過(guò)點(diǎn)M作傾斜角互補(bǔ)的兩條直線,分別與橢圓C相交于異于M點(diǎn)的A,B兩點(diǎn),求直線AB的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐中,底面
是
且邊長(zhǎng)為
的菱形,側(cè)面
為正三角形,其所在平面垂直于底面
,若
為
的中點(diǎn),
為
的中點(diǎn).
(1)求證:平面
;
(2)求證:;
(3)在棱上是否存在一點(diǎn)
,使平面
平面
,若存在,確定點(diǎn)
的位置;若不存在,說(shuō)明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線
:
,過(guò)點(diǎn)
的直線
的參數(shù)方程為:
(
為參數(shù)),直線
與曲線
分別交于
、
兩點(diǎn).
(1)寫出曲線的直角坐標(biāo)方程和直線
的普通方程;
(2)求線段的長(zhǎng)和
的積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面ABCD為矩形,O,E分別為AD,PB的中點(diǎn),平面
平面ABCD,
,
.
(1)求證:平面PCD;
(2)求證:平面PCD;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓O:x2+y2=1和定點(diǎn)A(2,1),由圓O外一點(diǎn)P(a,b)向圓O引切線PQ,切點(diǎn)為Q,|PQ|=|PA|成立,如圖.
(1)求a,b間的關(guān)系;
(2)求|PQ|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形為矩形,
平面
,連接
,
,
,
,
,則下列各組向量中,數(shù)量積不為零的是( )
A.與
B.
與
C.
與
D.
與
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com