日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

【題目】設數列{an}的前n項和為Sn(n∈N*),且滿足: ①|a1|≠|a2|;
②r(n﹣p)Sn+1=(n2+n)an+(n2﹣n﹣2)a1 , 其中r,p∈R,且r≠0.
(1)求p的值;
(2)數列{an}能否是等比數列?請說明理由;
(3)求證:當r=2時,數列{an}是等差數列.

【答案】
(1)解:n=1時,r(1﹣p)(a1+a2)=2a1﹣2a1,其中r,p∈R,且r≠0.又|a1|≠|a2|.

∴1﹣p=0,解得p=1


(2)解:設an=kan1(k≠±1),r(n﹣1)Sn+1=(n2+n)an+(n2﹣n﹣2)a1,∴rS3=6a2,2rS4=12a3+4a1,

化為:r(1+k+k2)=6k,r(1+k+k2+k3)=6k2+2.聯立解得r=2,k=1(不合題意),舍去,因此數列{an}不是等比數列


(3)解:證明:r=2時,2(n﹣1)Sn+1=(n2+n)an+(n2﹣n﹣2)a1,∴2S3=6a2,4S4=12a3+4a1,6S5=20a4+10a1

化為:a1+a3=2a2,a2+a4=2a3,a3+a5=2a4.假設數列{an}的前n項成等差數列,公差為d.

則2(n﹣1) =(n2+n)[a1+(n﹣1)d]+(n2﹣n﹣2)a1,化為an+1=a1+(n+1﹣1)d,

因此第n+1項也滿足等差數列的通項公式,

綜上可得:數列{an}成等差數列


【解析】(1)n=1時,r(1﹣p)(a1+a2)=2a1﹣2a1 , 其中r,p∈R,且r≠0.又|a1|≠|a2|.可得1﹣p=0,解得p.(2)設an=kan1(k≠±1),r(n﹣1)Sn+1=(n2+n)an+(n2﹣n﹣2)a1 , 可得rS3=6a2 , 2rS4=12a3+4a1 , 化為:r(1+k+k2)=6k,r(1+k+k2+k3)=6k2+2.聯立解得r,k,即可判斷出結論.(3)r=2時,2(n﹣1)Sn+1=(n2+n)an+(n2﹣n﹣2)a1 , 可得2S3=6a2 , 4S4=12a3+4a1 , 6S5=20a4+10a1 . 化為:a1+a3=2a2 , a2+a4=2a3 , a3+a5=2a4 . 假設數列{an}的前n項成等差數列,公差為d.利用已知得出an+1 , 即可證明.
【考點精析】通過靈活運用等差關系的確定和等比關系的確定,掌握如果一個數列從第2項起,每一項與它的前一項的差等于同一個常數,即=d ,(n≥2,n∈N)那么這個數列就叫做等差數列;等比數列可以通過定義法、中項法、通項公式法、前n項和法進行判斷即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓:的四個頂點圍成的四邊形的面積為,原點到直線的距離為.

(1)求橢圓的方程;

(2)已知定點,是否存在過的直線,使與橢圓交于,兩點,且以為直徑的圓過橢圓的左頂點?若存在,求出的方程:若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=sinωx﹣ cosωx(ω>0),若方程f(x)=﹣1在(0,π)上有且只有四個實數根,則實數ω的取值范圍為(
A.( , ]
B.( ]
C.( , ]
D.( , ]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】現有1000根某品種的棉花纖維,從中隨機抽取50根,纖維長度(單位:mm)的數據分組及各組的頻數如表,據此估計這1000根中纖維長度不小于37.5mm的根數是

纖維長度

頻數

[22.5,25.5)

3

[25.5,28.5)

8

[28.5,31.5)

9

[31.5,34.5)

11

[34.5,37.5)

10

[37.5,40.5)

5

[40.5,43.5]

4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知命題關于的不等式的解集是,命題函數的定義域為.

(1)如果真命題,求實數的取值范圍;

(2)如果真命題, 假命題, 實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數 ,則關于函數f(x)有以下四個命題( )
x∈R,f(f(x))=1;
x0 , y0∈R,f(x0+y0)=f(x0)+f(y0);
③函數f(x)是偶函數;
④函數f(x)是周期函數.
其中真命題的個數是( )
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 的離心率為 ,四個頂點構成的菱形的面積是4,圓M:(x+1)2+y2=r2(0<r<1).過橢圓C的上頂點A作圓M的兩條切線分別與橢圓C相交于B,D兩點(不同于點A),直線AB,AD的斜率分別為k1 , k2
(1)求橢圓C的方程;
(2)當r變化時,①求k1k2的值;②試問直線BD是否過某個定點?若是,求出該定點;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,的邊邊所在直線的方程為 滿足,點邊所在直線上且滿足

(I)求邊所在直線的方程;

(II)求的外接圓的方程;

(III)若點的坐標為,其中為正整數。試討論在的外接圓上是否存在點使得成立?說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)過點A(0,3),與雙曲線 =1有相同的焦點
(1)求橢圓C的方程;
(2)過A點作兩條相互垂直的直線,分別交橢圓C于P,Q兩點,則PQ是否過定點?若是,求出定點的坐標,若不是,請說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩成人不卡 | 午夜日韩| 欧美久久成人 | 亚洲精品白浆高清久久久久久 | 久久精品在线免费观看 | 99精品欧美一区二区三区 | 午夜视频在线观看网站 | 久久久久久久久久久成人 | 91精品久久久久久久久久入口 | 在线精品亚洲欧美日韩国产 | 欧美在线观看免费观看视频 | 亚洲wuma| 91久久久www播放日本观看 | 成人福利在线 | 精品久久久久久久人人人人传媒 | a级三四级黄大片 | 国产三级在线观看 | 成年人福利 | 久久三区 | 亚洲 国产 另类 精品 专区 | 欧美一区二区三区四区视频 | 欧美一区二区三区 | 欧美成人r级一区二区三区 超碰999 | 超碰在线观看免费版 | 精品美女在线观看视频在线观看 | 亚洲一区国产精品 | 日韩在线播放欧美字幕 | 一区二区三区欧美 | 欧美亚洲专区 | 亚洲国产精品久久 | 久久久毛片 | 午夜网址 | 欧美精品综合在线 | 天天综合7799精品影视 | 五月天久草| 天天干人人 | 人成精品 | 国产精品久久久久国产a级 日韩在线二区 | 99精品国产高清一区二区麻豆 | 白浆在线播放 | 亚洲免费电影一区 |