已知數(shù)列

,

,

,

,

,…,這個數(shù)列的特點是從第二項起,每一項都等于它的前后兩項之和,則這個數(shù)列的前

項之和

=
.
根據(jù)題意可考慮數(shù)列是否為周期數(shù)列,所以只需寫出數(shù)列的前幾項,找規(guī)律即可.當數(shù)列為周期數(shù)列時,只要找到周期,再看數(shù)列中包含幾個周期,每個周期的和是多少,就可以求出.
解:根據(jù)題意寫出這個數(shù)列的前7項,分別為2004,2005,1,-2004,-2005,-1,2004,
發(fā)現(xiàn)從第7項起,數(shù)列重復(fù)出現(xiàn),所以,此數(shù)列為周期數(shù)列,且周期為6,
計算前6項和為2004+2005+1+(-2004)+(-2005)+(-1)=0.
又因為2010為6的倍數(shù),所以這個數(shù)列的前2010項之和S2010=0
故答案為 0.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分18分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,
第3小題滿分8分.
已知數(shù)列

:

,

,

,

(

是正整數(shù)),與數(shù)列

:

,

,

,

,

(

是正整數(shù)).記

.
(1)若

,求

的值;
(2)求證:當

是正整數(shù)時,

;
(3)已知

,且存在正整數(shù)

,使得在

,

,

,

中有4項為100.
求

的值,并指出哪4項為100.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)函數(shù)

的最小值為

,最大值為

,且

,
求數(shù)列

的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知等差數(shù)列

的中,公差

,前

項和

,則

與

分別為
A.10,8 | B.13,29 | C.13,8 | D.10,29 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
在等差數(shù)列

中,有

,則此數(shù)列的前13項之和為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
將數(shù)列

中的所有項按每一行比上一行多一項的規(guī)則排成下表:




……
記表中的第一列數(shù)

、

、

、

……構(gòu)成的數(shù)列為

,

,

為數(shù)列

的前

項和,且滿足

(I)證明數(shù)列

成等差數(shù)列,并求數(shù)列

的通項公式;
(II)上表中,若從第三行起,每一行中的數(shù)從左到右的順序均構(gòu)成等比數(shù)列,且公比為同一個正數(shù),當

時,求上表中第

行所有項的和
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)數(shù)列{
an}是公差不為零的等差數(shù)列,
Sn是數(shù)列{
an}的前
n項和,且

=9
S2,
S4=4
S2,求數(shù)列的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12)
已知數(shù)列滿足

,


(1)求

的通項公式.
(2)求數(shù)列

前

項和.
查看答案和解析>>