【題目】將函數y=sinx的圖象上所有點的橫坐標縮小到原來的 (縱坐標不變),再將所得到的圖象上所有點向左平移
個單位,所得函數圖象的解析式為( )
A.y=sin(2x﹣ )
B.y=sin(2x+ )
C.y=sin( x+
)
D.y=sin( x+
)
科目:高中數學 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E、F、G分別是棱A1B1、BB1、B1C1的中點,則下列結論中:
①FG⊥BD
②B1D⊥面EFG
③面EFG∥面ACC1A1
④EF∥面CDD1C1
正確結論的序號是( )
A.①和②
B.②和④
C.①和③
D.③和④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】小明同學在寒假社會實踐活動中,對白天平均氣溫與某家奶茶店的品牌飲料銷量之間的關系進行了分析研究,他分別記錄了1月11日至1月15日的白天氣溫
(
)與該奶茶店的
品牌飲料銷量
(杯),得到如表數據:
日期 | 1月11號 | 1月12號 | 1月13號 | 1月14號 | 1月15號 |
平均氣溫 | 9 | 10 | 12 | 11 | 8 |
銷量 | 23 | 25 | 30 | 26 | 21 |
(1)若先從這五組數據中抽出2組,求抽出的2組數據恰好是相鄰2天數據的概率;
(2)請根據所給五組數據,求出關于
的線性回歸方程式
;
(3)根據(2)所得的線性回歸方程,若天氣預報1月16號的白天平均氣溫為,請預測該奶茶店這種飲料的銷量.
(參考公式:,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,矩形ABCD所在的半平面和直角梯形CDEF所在的半平面成60°的二面角,DE∥CF,CD⊥DE,AD=2, ,CF=6,∠CFE=45°.
(Ⅰ)求證:BF∥平面ADE;
(Ⅱ)在線段CF上求一點G,使銳二面角B﹣EG﹣D的余弦值為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知四棱錐的側棱PD⊥底面ABCD,且底面ABCD是直角梯形,AD⊥CD,AB∥CD,AB=AD= CD=2,點M在側棱上.
(1)求證:BC⊥平面BDP;
(2)若側棱PC與底面ABCD所成角的正切值為 ,點M為側棱PC的中點,求異面直線BM與PA所成角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,A,B兩點5條連線并聯,它們在單位時間內能通過的最大信息量依次為2,3,4,3,2.現記從中任取三條線且在單位時間內都通過的最大信息總量為ξ,則P(ξ≥8)= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,李先生家住H小區,他工作在C科技園區,從家開車到公司上班路上有L1、L2兩條路線,L1路線上有A1、A2、A3三個路口,各路口遇到紅燈的概率均為 ;L2路線上有B1、B2兩個路口,各路口遇到紅燈的概率依次為
,
.
(1)若走L1路線,求最多遇到1次紅燈的概率;
(2)若走L2路線,求遇到紅燈次數X的數學期望;
(3)按照“平均遇到紅燈次數最少”的要求,請你幫助李先生從上述兩條路線中選擇一條最好的上班路線,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是一幾何體的平面展開圖,其中ABCD為正方形,E,F分別為PA,PD的中點,
在此幾何體中,給出下面四個結論:
①直線BE與直線CF異面; ②直線BE與直線AF異面;
③直線EF∥平面PBC; ④平面BCE⊥平面PAD.
其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com