【答案】
分析:(I)利用等比數列的定義,構造

進行證明.
(II)利用(I)可先求a
n+1-a
n=2
n,利用疊加法可得a
n=(a
n-a
n-1)+(a
n-1-a
n-2)+…+(a
2-a
1)+a
1,從而可求a
n(III)由已知可得2[b
1+b
2+…+b
n-n=nb
n,利用遞推公式可得2[(b
1+b
2+…+b
n+b
n+1)-(n+1)]=(n+1)b
n+1結合兩式可證.
解答:解:(I)證明:∵a
n+2=3a
n+1-2a
n,
∴a
n+2-a
n+1=2(a
n+1-a
n),
∵a
1=1,a
2=3,
∴

.
∴{a
n+1-a
n}是以a
2-a
1=2為首項,2為公比的等比數列.
(II)解:由(I)得a
n+1-a
n=2
n(n∈N
*),
∴a
n=(a
n-a
n-1)+(a
n-1-a
n-2)++(a
2-a
1)+a
1=2
n-1+2
n-2++2+1
=2
n-1(n∈N
*).
(III)證明:∵

,
∴

=

∴2[(b
1+b
2+…+b
n)-n]=nb
n,①
2[(b
1+b
2+…+b
n+b
n+1)-(n+1)]=(n+1)b
n+1.②
②-①,得2(b
n+1-1)=(n+1)b
n+1-nb
n,
即(n-1)b
n+1-nb
n+2=0.③
nb
n+2-(n+1)b
n+1+2=0.④
④-③,得nb
n+2-2nb
n+1+nb
n=0,
即b
n+2-2b
n+1+b
n=0,∴b
n+2-b
n+1=b
n+1-b
n(n∈N
*),
∴{b
n}是等差數列.
點評:本小題主要考查數列、不等式等基本知識的綜合運用,考查化歸的數學思想方法在解題中的運用,考查綜合解題能力.