【題目】已知函數.
(I)求函數的單調區間;
(Ⅱ)當恒成立,求
的取值范圍.
【答案】(Ⅰ)詳見解析;(Ⅱ).
【解析】
試題分析:(Ⅰ)先求函數的定義域,再求函數的導數,,分
和
兩種情況討論函數的單調性和單調區間;(Ⅱ)首先求
,因為
,所以設
,求函數的導數
,因為不能判斷導函數的正負或是單調性,所以再求
,這樣可分
,
和
的情況討論
的正負,從而得到
的單調性以及最小值,進一步得到
的單調性和最值,即證明
,得到
的取值范圍.
試題解析:(Ⅰ)的定義域為
,
,
① ,則
,
在
上單調遞增,
② 若,則由
,得
,
當時,
,
當時,
,
所以在
上單調遞增,在
上單調遞減,
綜上:當時,
的單調遞增區間為
,
當時,
的單調遞增區間為
,單調減區間為
.
(Ⅱ) ,
令,
,
令,
,
①若,
,
在
遞增,
,
在
上遞增,
,
從而,不符合題意,
②若時,當
時,
,
在
上單調遞增,
從而,
在
上遞增,
,
從而,不符合題意,
③若,
在
恒成立,
在在
遞減,
,
從而在
遞減,
所以,
綜上所述:的取值范圍是
.
科目:高中數學 來源: 題型:
【題目】某商店為了更好地規劃某種商品進貨的量,該商店從某一年的銷售數據中,隨機抽取了組數據作為研究對象,如下圖所示(
(噸)為該商品進貨量,
(天)為銷售天數):
(Ⅰ)根據上表數據在下列網格中繪制散點圖:
(Ⅱ)根據上表提供的數據,求出關于
的線性回歸方程
;
(Ⅲ)根據(Ⅱ)中的計算結果,若該商店準備一次性進貨該商品噸,預測需要銷售天數;
參考公式和數據:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地自來水苯超標,當地自來水公司對水質檢測后,決定在水中投放一種藥劑來凈化水質,已知每投放質量為的藥劑后,經過
天該藥劑在水中釋放的濃度
(毫克/升)滿足
,其中
,當藥劑在水中的濃度不低于5(毫克/升)時稱為有效凈化;當藥劑在水中的濃度不低于5(毫克/升)且不高于10(毫克/升)時稱為最佳凈化.
(Ⅰ)如果投放的藥劑質量為,試問自來水達到有效凈化一共可持續幾天?
(Ⅱ)如果投放的藥劑質量為,為了使在9天(從投放藥劑算起包括9天)之內的自來水達到最佳凈化,試確定應該投放的藥劑質量
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,以
為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
(1)求橢圓的標準方程;
(2)已知點,和平面內一點
,過點
任作直線
與橢圓
相交于
兩點,設直線
的斜率分別為
,
,試求
滿足的關系式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的圖象上有一點列
,點
在
軸上的射影是
,且
(
且
),
.
(1)求證: 是等比數列,并求出數列
的通項公式;
(2)對任意的正整數,當
時,不等式
恒成立,求實數
的取值范圍.
(3)設四邊形的面積是
,求證:
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com