分析:首先把一個n次多項式f(x)寫成(…((a[n]x+a[n-1])x+a[n-2])x+…+a[1])x+a[0]的形式,然后化簡,求n次多項式f(x)的值就轉化為求n個一次多項式的值,求出V4的值.
解答:解:∵f(x)=12+35x-8x2+79x3+6x4+5x5+3x6
=(((((3x+5)x+6)x+79)x-8)x+35)x+12,
∴v0=a6=3,
v1=v0x+a5=3×(-4)+5=-7,
v2=v1x+a4=-7×(-4)+6=34,
v3=v2x+a3=34×(-4)+79=-57,
v4=v3x+a2=-57×(-4)+(-8)=220.
故答案為:220.
點評:本題考查通過程序框圖解決實際問題,把實際問題通過數學上的算法,寫成程序,然后求解,屬于基礎題.