日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
f(x)=
13
x3-(1+a)x2+4ax+24a
,其中a∈R.
(1)若f(x)有極值,求a的取值范圍;
(2)若當x≥0,f(x)>0恒成立,求a的取值范圍.
分析:(1)先求出函數的導數,由題意知,導數等于0有兩個不同的實數根,△=4(1+a)2-16a=4(1-a)2>0,由此求得a的取值范圍;
(2)先將問題轉化為求函數在x≥0時的最小值問題,再結合(1)中的單調性可確定f(x)在x=2a或x=0處取得最小值,求出最小值,即可得到a的范圍.
解答:解:(1)由題意可知:f'(x)=x2-2(1+a)x+4a,且f(x)有極值,
則f'(x)=0有兩個不同的實數根,故△=4(1+a)2-16a=4(1-a)2>0,
解得:a≠1,即a∈(-∞,1)∪(1,+∞)(4分)
(2)由于x≥0,f(x)>0恒成立,則f(0)=24a>0,即a>0(6分)
由于f'(x)=x2-2(1+a)x+4a=(x-2)(x-2a),則
1當0<a<12時,f(x)3在x=2a4處取得極大值、在x=25處取得極小值,
則當x≥0時,minf(x)=f(2)=28a-
4
3
>0
,解得:a>
1
21
;(8分)
6當a=17時,f'(x)≥08,即f(x)9在[0,+∞)10上單調遞增,且f(0)=24>011,
則f(x)≥f(0)>0恒成立;(10分)
12當a>113時,f(x)14在x=215處取得極大值、在x=2a16處取得極小值,
則當x≥0時,minf(x)=f(2a)=-
4
3
a3+4a2+24a>0
,解得:-3<a<6
綜上所述,a的取值范圍是:
1
21
<a<6
(12分)
點評:本題考查導數與函數的綜合運用能力,涉及利用導數討論函數的單調性.解答關鍵是利用函數在某點存在極值的條件,利用導數判斷函數的單調性的方法,以及函數的恒成立問題的解決方法.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

f(x)=-
1
3
x3+
1
2
x2+2ax

(1)若f(x)在(
2
3
,+∞)
上存在單調遞增區間,求a的取值范圍.
(2)當0<a<2時,f(x)在[1,4]的最小值為-
16
3
,求f(x)在該區間上的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

f(x)=
1
3
x3-
1
2
ax2+(a-1)x
(a∈R).
(1)若x=1是函數f(x)的極大值點,求a的取值范圍;
(2)若在x∈[1,3]上至少存在一個x0,使f(x0)≥2成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

f(x)=
13
x3-ax2+(a-1)x

(1)若f(x)在x=1處 切線的斜率恰好為1,求a的值;
(2)若f(x)在(0,1)內遞減,求a的取值范圍;又若此時f(x)在x1處取極小值,在x2處取極大值,判斷x1、x2與0和1的大小關系.

查看答案和解析>>

科目:高中數學 來源: 題型:

f(x)=-
1
3
x3+
1
2
x2+2ax

(1)若f(x)在(
2
3
,+∞)
上存在單調遞增區間,求a的取值范圍;
(2)當a=1時,求f(x)在[1,4]上的最值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 传媒av在线| 中文字幕亚洲字幕一区二区 | 毛片一区二区三区 | 美女逼网站 | 日本色道视频 | 亚洲精品免费在线视频 | 成人免费淫片视频观 | 欧美综合一区二区三区 | 欧美日韩亚洲视频 | 欧美日韩中文在线观看 | 亚洲最新中文字幕 | 亚洲精品美女久久久久久久久久 | 欧美淫片 | 日韩91| 射久久| 亚洲久视频 | 国产一在线 | 久久久久久精 | 美女中文字幕视频 | 最新av在线网址 | 欧美日韩精品免费观看视频 | 手机在线成人免费视频 | 在线视频亚洲 | 免费在线成人 | 成人精品 | 欧美夜夜骑 | 91精品久久久久久久 | 亚洲一区二区免费在线观看 | 韩国精品一区二区 | 综合久久综合久久 | 久久人人爽人人爽 | 精品婷婷 | 国产精品视频一区二区三区四蜜臂 | 日本视频一区二区三区 | 久久久国产视频 | 精品一区在线 | 久久国产一区二区三区 | jizz18毛片| 欧美日韩精品综合 | 日韩激情网站 | 日韩欧美在线视频 |