【題目】已知,
,當(dāng)
,
分別在
軸,
軸上滑動(dòng)時(shí),點(diǎn)
的軌跡記為
.
(1)求曲線的方程;
(2)設(shè)斜率為的直線
與
交于
,
兩點(diǎn),若
,求
.
【答案】(1)(2)k=±
.
【解析】
(1)設(shè)M(0,m),N(n,0),P(x,y),列x,y關(guān)于m,n的表達(dá)式,利用m,n的關(guān)系式,即可求解E的方程;(2)設(shè)MN:y=kx+m,與橢圓聯(lián)立求得MN中點(diǎn)橫坐標(biāo),利用MN和PQ的中點(diǎn)重合,列方程求解即可
(1)設(shè)M(0,m),N(n,0),P(x,y),
由|MN|=1得m2+n2=1.
由=3
得(x,y-m)=3(n,-m),
從而x=3n,y-m=-3m,
所以n=,m=-
,
所以曲線E的方程為.
(2)設(shè)MN:y=kx+m,所以n=-.①
設(shè)P(x1,y1),Q(x2,y2),
將MN代入到E的方程并整理,可得(4+9k2)x2+18kmx+9m2-36=0,
所以x1+x2=.
因?yàn)?/span>|PN|=|MQ|,所以MN和PQ的中點(diǎn)重合,
所以=
,②
聯(lián)立①②可得k2=,故k=±
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中心在原點(diǎn),對(duì)稱(chēng)軸為坐標(biāo)軸的雙曲線與圓
:
有公共點(diǎn)
,且圓
在點(diǎn)
處的切線與雙曲線
的一條漸近線平行,則該雙曲線的實(shí)軸長(zhǎng)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在湖南師大附中的校園歌手大賽決賽中,有6位參賽選手(1號(hào)至6號(hào))登臺(tái)演出,由現(xiàn)場(chǎng)的100位同學(xué)投票選出最受歡迎的歌手,各位同學(xué)須彼此獨(dú)立地在投票器上選出3位侯選人,其中甲同學(xué)是1號(hào)選手的同班同學(xué),必選1號(hào),另在2號(hào)至6號(hào)選手中隨機(jī)選2名;乙同學(xué)不欣賞2號(hào)選手,必不選2號(hào),在其他5位選手中隨機(jī)選出3名;丙同學(xué)對(duì)6位選手的演唱沒(méi)有偏愛(ài),因此在1號(hào)至6號(hào)選手中隨機(jī)選出3名.
(1)求同學(xué)甲選中3號(hào)且同學(xué)乙未選中3號(hào)選手的概率;
(2)設(shè)3號(hào)選手得到甲、乙、丙三位同學(xué)的票數(shù)之和為X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:
, 過(guò)點(diǎn)
的直線
:
與橢圓
交于M、N兩點(diǎn)(M點(diǎn)在N點(diǎn)的上方),與
軸交于點(diǎn)E.
(1)當(dāng)且
時(shí),求點(diǎn)M、N的坐標(biāo);
(2)當(dāng)時(shí),設(shè)
,
,求證:
為定值,并求出該值;
(3)當(dāng)時(shí),點(diǎn)D和點(diǎn)F關(guān)于坐標(biāo)原點(diǎn)對(duì)稱(chēng),若△MNF的內(nèi)切圓面積等于
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《鄭州市城市生活垃圾分類(lèi)管理辦法》已經(jīng)政府常務(wù)會(huì)議審議通過(guò),自2019年12月1日起施行.垃圾分類(lèi)是對(duì)垃圾收集處置傳統(tǒng)方式的改革,是對(duì)垃圾進(jìn)行有效處置的一種科學(xué)管理方法.所謂垃圾其實(shí)都是資源,當(dāng)你放錯(cuò)了位置時(shí)它才是垃圾.某企業(yè)在市科研部門(mén)的支持下進(jìn)行研究,把廚余垃圾加工處理為一種可銷(xiāo)售的產(chǎn)品.已知該企業(yè)每周的加工處理量最少為75噸,最多為100噸.周加工處理成本y(元)與周加工處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為,且每加工處理一噸廚余垃圾得到的產(chǎn)品售價(jià)為16元.
(Ⅰ)該企業(yè)每周加工處理量為多少噸時(shí),才能使每噸產(chǎn)品的平均加工處理成本最低?
(Ⅱ)該企業(yè)每周能否獲利?如果獲利,求出利潤(rùn)的最大值;如果不獲利,則需要市政府至少補(bǔ)貼多少元才能使該企業(yè)不虧損?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(0,-2),橢圓E: (a>b>0)的離心率為
,F是橢圓E的右焦點(diǎn),直線AF的斜率為
,O為坐標(biāo)原點(diǎn).
(1)求E的方程;
(2)設(shè)過(guò)點(diǎn)A的動(dòng)直線l與E相交于P,Q兩點(diǎn).當(dāng)△OPQ的面積最大時(shí),求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若圓的內(nèi)接矩形的周長(zhǎng)最大值為
.
(1)求圓O的方程;
(2)若過(guò)點(diǎn)的直線
與圓O交于A,B兩點(diǎn),如圖所示,且直線
的斜率
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為
,
為參數(shù)
,在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸的極坐標(biāo)系中,曲線
的極坐標(biāo)方程為
.
Ⅰ
寫(xiě)出
的普通方程和
的直角坐標(biāo)方程;
Ⅱ
若
與
相交于A,B兩點(diǎn),求
的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com