如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,點E、F分別在棱BB1、CC1上,且BE=BB1,C1F=
CC1.
(1)求異面直線AE與A1 F所成角的大小;
(2)求平面AEF與平面ABC所成角的余弦值.
科目:高中數學 來源: 題型:解答題
(理科)(本小題滿分12分)如圖分別是正三棱臺ABC-A1B1C1的直觀圖和正視圖,O,O1分別是上下底面的中心,E是BC中點.
(1)求正三棱臺ABC-A1B1C1的體積;
(2)求平面EA1B1與平面A1B1C1的夾角的余弦;
(3)若P是棱A1C1上一點,求CP+PB1的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知四棱柱的底面是邊長為1的正方形,側棱垂直底邊ABCD四棱柱,
,
E是側棱AA1的中點,求
(1)求異面直線與B1E所成角的大小;
(2)求四面體的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起, 使得△ABD與△ABC成直二面角,如圖二,在二面角
中.
(1)求證:BD⊥AC;
(2)求D、C之間的距離;
(3)求DC與面ABD成的角的正弦值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
選修4-1:幾何證明選講
如圖,在等腰梯形ABCD中,對角線AC⊥BD,且相交于點O ,E是AB邊的中點,EO的延長線交CD于F.
(1)求證:EF⊥CD;
(2)若∠ABD=30°,求證
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,正方形與梯形
所在的平面互相垂直,
,
∥
,
,點
在線段
上.
(I)當點為
中點時,求證:
∥平面
;
(II)當平面與平面
所成銳二面角的余弦值為
時,求三棱錐
的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題13分)如圖1,在三棱錐P—ABC中,平面ABC,
,D為側棱PC上一點,它的正(主)視圖和側(左)視圖如圖2所示。
(1)證明:平面PBC;
(2)求三棱錐D—ABC的體積;
(3)在的平分線上確定一點Q,使得
平面ABD,并求此時PQ的長。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分10分)如圖,四邊形ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中點.
求證:(1) PA∥平面BDE .
(2)平面PAC平面BDE .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com