【題目】已知函數是偶函數.
(1)求實數的值;
(2)若的圖像在直線
下方,求b的取值范圍;
(3)設函數,若
在
上的最小值為0,求實數m的值.
科目:高中數學 來源: 題型:
【題目】定義在上的函數
,如果滿足:對任意
,存在常數
,都有
成立,則稱
是
上的有界函數,其中
稱為函數
的上界.已知函數
.
(1)當時,求函數
在
上的值域,并判斷函數
在
上是否為有界函數,請說明理由;
(2)若是
上的有界函數,且
的上界為3,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2018河南濮陽市高三一模】已知點在拋物線
上,
是拋物線上異于
的兩點,以
為直徑的圓過點
.
(I)證明:直線過定點;
(II)過點作直線
的垂線,求垂足
的軌跡方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了研究某種微生物的生長規律,研究小組在實驗室對該種微生物進行培育實驗.前三天觀測的該微生物的群落單位數量分別為12,16,24.根據實驗數據,用y表示第天的群落單位數量,某研究員提出了兩種函數模型;①
;②
,其中a,b,c,p,q,r都是常數.
(1)根據實驗數據,分別求出這兩種函數模型的解析式;
(2)若第4天和第5天觀測的群落單位數量分別為40和72,請從這兩個函數模型中選出更合適的一個,并計算從第幾天開始該微生物群落的單位數量超過1000.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知直線的參數方程是
(
是參數),圓
的極坐標方程為
.
(Ⅰ)求圓心的直角坐標;
(Ⅱ)由直線上的點向圓
引切線,求切線長的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知直線的參數方程是
(
是參數),圓
的極坐標方程為
.
(Ⅰ)求圓心的直角坐標;
(Ⅱ)由直線上的點向圓
引切線,求切線長的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中中,直線
,圓
的參數方程為
為參數),以坐標原點為極點,以
軸正半軸為極軸,建立極坐標系.
(1)求直線和圓
的極坐標方程;
(2)若直線與圓
交于
兩點,且
的面積是
,求實數
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com