【題目】執行一次如圖所示的程序框圖,若輸出i的值為0,則下列關于框圖中函數f(x)(x∈R)的表述,正確的是( )
A.f(x)是奇函數,且為減函數
B.f(x)是偶函數,且為增函數
C.f(x)不是奇函數,也不為減函數
D.f(x)不是偶函數,也不為增函數
科目:高中數學 來源: 題型:
【題目】在各項均為正數的等比數列{an}中,a1=2,且2a1 , a3 , 3a2成等差數列.
(Ⅰ) 求等比數列{an}的通項公式;
(Ⅱ) 若數列{bn}滿足bn=11﹣2log2an , 求數列{bn}的前n項和Tn的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)滿足f(x)=f(2-x),且f(1)=6,f(3)=2.
(1)求f(x)的解析式
(2)是否存在實數m,使得在[-1,3]上f(x)的圖象恒在直線y=2mx+1的上方?若存在,求m的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“共享單車”的出現,為我們提供了一種新型的交通方式.某機構為了調查人們對此種交通方式的滿意度,從交通擁堵不嚴重的A城市和交通擁堵嚴重的B城市分別隨機調查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖如圖:
(Ⅰ)根據莖葉圖,比較兩城市滿意度評分的平均值的大小及方差的大小(不要求計算出具體值,給出結論即可);
(Ⅱ)若得分不低于80分,則認為該用戶對此種交通方式“認可”,否則認為該用戶對此種交通方式“不認可”,請根據此樣本完成此2×2列聯表,并據此樣本分析是否有95%的把握認為城市擁堵與認可共享單車有關;
A | B | 合計 | |
認可 | |||
不認可 | |||
合計 |
(Ⅲ)若從此樣本中的A城市和B城市各抽取1人,則在此2人中恰有一人認可的條件下,此人來自B城市的概率是多少?
附:參考數據:
(參考公式: )
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正實數a,b,c,函數f(x)=|x+a||x+b|. (Ⅰ)若a=1,b=3,解關于x的不等式f(x)+x+1<0;
(Ⅱ)求證:f(1)f(c)≥16abc.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐A﹣BCD中,平面ABD⊥平面BCD,AB=AD,∠CBD=60°,BD=2BC=4,點E在CD上,DE=2EC.
(Ⅰ)求證:AC⊥BE;
(Ⅱ)若二面角E﹣BA﹣D的余弦值為 ,求三棱錐A﹣BCD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線x2=2py和 ﹣y2=1的公切線PQ(P是PQ與拋物線的切點,未必是PQ與雙曲線的切點)與拋物線的準線交于Q,F(0,
),若
|PQ|=
|PF|,則拋物線的方程是( )
A.x2=4y
B.x2=2 y
C.x2=6y
D.x2=2 y
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著生活水平的提高,人們對空氣質量的要求越來越高,某機構為了解公眾對“車輛限行”的態度,隨機抽查50人,并將調查情況進行整理后制成如表:
年齡(歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,60) |
頻數 | 10 | 10 | 10 | 10 | 10 |
贊成人數 | 3 | 5 | 6 | 7 | 9 |
(1)世界聯合國衛生組織規定:[15,45)歲為青年,(45,60)為中年,根據以上統計數據填寫以下2×2列聯表:
青年人 | 中年人 | 合計 | |
不贊成 |
|
|
|
贊成 |
|
|
|
合計 |
|
|
|
(2)判斷能否在犯錯誤的概率不超過0.05的前提下,認為贊成“車柄限行”與年齡有關? 附: ,其中n=a+b+c+d
獨立檢驗臨界值表:
P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |
(3)若從年齡[15,25),[25,35)的被調查中各隨機選取1人進行調查,設選中的兩人中持不贊成“車輛限行”態度的人員為ξ,求隨機變量ξ的分布列和數學期望Eξ.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com