(1)設動點的坐標為P(x,y),則

=(x,y-1),

=(x,y+1),

=(1-x,-y)
∵

·

=k|

|
2,∴x
2+y
2-1=k[(x-1)
2+y
2] 即(1-k)x
2+(1-k)y
2+2kx-k-1=0.
若k=1,則方程為x=1,表示過點(1,0)是平行于y軸的直線.
若k≠1,則方程化為:

,表示以(-

,0)為圓心,以

為半徑的圓.
(2)當k=2時,方程化為(x-2)
2+y
2=1.∵2

+

=2(x,y-1)+(x,y+1)=(3x,3y-1),
∴|2

+

|=

.又x
2+y
2=4x-3,∴|2

+

|=
∵(x-2)
2+y
2=1,∴令x=2+cosθ,y=sinθ,
則36x-6y-26=36cosθ-6sinθ+46=6

cos(θ+φ)+46∈[46-6

,46+6

],
∴|2

+

|
max=

=3+

,|2

+

|
min=

=

-3.