日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知橢圓E1
x2
10
+
2y2
5
=1
 E2
x2
a2
+
2y2
b2
=1(a>b>0)
.E1與E2有相同的離心率,過點F(-
3
,0
)的直線l與E1,E2依次交于A,C,D,B四點(如圖).當直線l過E2的上頂點時,直線l的傾斜角為
π
6

(1)求橢圓E2的方程;
(2)求證:|AC|=|DB|;
(3)若|AC|=1,求直線l的方程.
分析:(1)根據當直線l過E2的上頂點時,直線l的傾斜角為
π
6
,且橢圓的離心率是
c
a
=
3
2
,建立方程,即可求得橢圓E2的方程;
(2)當直線l垂直x軸時,易求得|AC|=|DB|.當直線l不垂直x軸時,設l:y=k(x-
3
),將直線的方程代入橢圓的方程,消去y得到關于x的一元二次方程,再結合根系數的關系得出x1+x2=x3+x4從而有|AC|=|DB|.
(3)由(2)知,|AC|=|CD|+2,先分類討論:當直線l垂直x軸時,不合要求;當直線l不垂直x軸時,設l:y=k(x-
3
),由(2)知,x1+x2=x3+x4,x1x2,x3x4,利用弦長公式即可得關于k的方程,從而解決問題.
解答:解:(1)∵b=1,
c
a
=
3
2
,∴a=2,b=1,
因此橢圓E2的方程為
1
4
x2+y2=1.
(2)當直線l垂直x軸時,易求得A(-
3
,-
7
2
),C(-
3
,-
1
2
),D(-
3
,
1
2
),B(-
3
,
7
2

因此|AC|=|DB|.
當直線l不垂直x軸時,設l:y=k(x-
3

y=k(x-
3
)
x2
4
+y2=1

得(1+4k2)x2+8
3
k2x+12k2-4=0     ①,
y=k(x-
3
)
x2
10
+
2
5
y2=1

得(1+4k2)x2+8
3
k2x+12k2-10=0   ②,
設A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),則x3、x4是方程①的解,
x1、x2是方程②的解.∵x1+x2=x3+x4=
-8
3
k2
1+4k2
,
線段AB,CD的中點重合,∴|AC|=|DB|.
(3).由(2)知,|AC|=|CD|+2,
當直線l垂直x軸時,不合要求;
當直線l不垂直x軸時,設l:y=k(x-
3
),由(2)知,
x1+x2=x3+x4=
-8
3
k2
1+4k2
,x1x2=
12k2-10
1+4k2
,
x3x4=
12k2-4
1+4k2
,|CD|=
(1+k2)[(x1+x2)2-4x1x2]
=
4k2+4
1+4k2

|AB|=
(1+k2)[(x3+x4)2-4x3x4]
=
8(1+k2)(14k2+5)
1+4k2

4k2+4
1+4k2
+2=
8(1+k2)(14k2+5)
1+4k2
,
化簡可得:8k4-2k2-1=(4k2+1)(2k2-1)=0,
∴k=±
2
2

∴l:y=±
2
2
(x+
3
).
點評:本題考查橢圓與橢圓的標準方程,考查直線與橢圓的位置關系,正確運用韋達定理是關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,已知橢圓E1方程為
x2
a2
+
y2
b2
=1(a>b>0)
,圓E2方程為x2+y2=a2,過橢圓的左頂點A作斜率為k1直線l1與橢圓E1和圓E2分別相交于B、C. 
(Ⅰ)若k1=1時,B恰好為線段AC的中點,試求橢圓E1的離心率e;
(Ⅱ)若橢圓E1的離心率e=
1
2
,F2為橢圓的右焦點,當|BA|+|BF2|=2a時,求k1的值;
(Ⅲ)設D為圓E2上不同于A的一點,直線AD的斜率為k2,當
k1
k2
=
b2
a2
時,試問直線BD是否過定點?若過定點,求出定點坐標;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年廣東省廣州市海珠區高二(下)期末數學試卷(理科)(解析版) 題型:解答題

如圖,已知橢圓E1方程為,圓E2方程為x2+y2=a2,過橢圓的左頂點A作斜率為k1直線l1與橢圓E1和圓E2分別相交于B、C. 
(Ⅰ)若k1=1時,B恰好為線段AC的中點,試求橢圓E1的離心率e;
(Ⅱ)若橢圓E1的離心率e=,F2為橢圓的右焦點,當|BA|+|BF2|=2a時,求k1的值;
(Ⅲ)設D為圓E2上不同于A的一點,直線AD的斜率為k2,當時,試問直線BD是否過定點?若過定點,求出定點坐標;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年廣東省廣州市七區聯考高二(下)期末數學試卷(理科)(解析版) 題型:解答題

如圖,已知橢圓E1方程為,圓E2方程為x2+y2=a2,過橢圓的左頂點A作斜率為k1直線l1與橢圓E1和圓E2分別相交于B、C. 
(Ⅰ)若k1=1時,B恰好為線段AC的中點,試求橢圓E1的離心率e;
(Ⅱ)若橢圓E1的離心率e=,F2為橢圓的右焦點,當|BA|+|BF2|=2a時,求k1的值;
(Ⅲ)設D為圓E2上不同于A的一點,直線AD的斜率為k2,當時,試問直線BD是否過定點?若過定點,求出定點坐標;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年湖南省郴州市汝城一中高三(上)周練數學試卷(4)(理科)(解析版) 題型:解答題

已知橢圓E1 E2.E1與E2有相同的離心率,過點F()的直線l與E1,E2依次交于A,C,D,B四點(如圖).當直線l過E2的上頂點時,直線l的傾斜角為
(1)求橢圓E2的方程;
(2)求證:|AC|=|DB|;
(3)若|AC|=1,求直線l的方程.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 成人免费视屏 | 亚洲高清视频一区二区 | 2021最新热播中文字幕-第1页-看片视频 亚洲第一男人天堂 | 日本一区二区三区免费观看 | 91精品久久久久久久久中文字幕 | 少妇av片 | 国产精品午夜电影 | 成人精品高清 | 成人欧美一区二区三区在线播放 | 日韩91| 国产成人精品在线观看 | 久久久www成人免费精品 | 欧美一区二区三区国产精品 | 成人黄色免费看 | 亚洲天堂一区二区 | 成人在线视频播放 | 日韩欧美在线视频播放 | 91精品国产91久久综合桃花 | 久久狠狠| 国产精品毛片一区二区 | 久久国产一区二区三区 | 久久99精品视频 | 欧美日韩亚洲另类 | 日韩成人精品在线 | 特级毛片在线大全免费播放 | 亚洲视频自拍 | 特级淫片女子高清视频在线观看 | 欧美综合久久 | 免费毛片一区二区三区久久久 | 久久精品1区2区 | 91久久久久 | 亚洲一级在线免费观看 | 欧美亚洲天堂 | 亚洲精品国产第一综合99久久 | 亚洲一区二区在线播放 | www久| a久久免费视频 | www.国产精品| 国产一区二区三区视频在线观看 | 黄色免费观看 | 亚洲一区二区三区高清 |