【題目】某公司想了解對某產品投入的宣傳費用與該產品的營業額的影響.下面是以往公司對該產品的宣傳費用 (單位:萬元)和產品營業額
(單位:萬元)的統計折線圖.
(Ⅰ)根據折線圖可以判斷,可用線性回歸模型擬合宣傳費用與產品營業額
的關系,請用相關系數加以說明;
(Ⅱ)建立產品營業額關于宣傳費用
的歸方程;
(Ⅲ)若某段時間內產品利潤與宣傳費
和營業額
的關系為
,應投入宣傳費多少萬元才能使利潤最大,并求最大利潤.
參考數據: ,
,
,
,
參考公式:相關系數, ,
回歸方程中斜率和截距的最小二乘佔計公式分別為
,
.(計算結果保留兩位小數)
科目:高中數學 來源: 題型:
【題目】閱讀如圖所示的程序框圖,解答下列問題:
(1)求輸入的的值分別為
時,輸出的
的值;
(2)根據程序框圖,寫出函數(
)的解析式;并求當關于
的方程
有三個互不相等的實數解時,實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2017·全國Ⅱ卷)如圖,四棱錐P-ABCD中,側面PAD為等邊三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中點.
(1)證明:直線CE∥平面PAB;
(2)點M在棱PC上,且直線BM與底面ABCD所成角為45°,求二面角M-AB-D的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)與函數g(x)的圖像關于原點對稱,且f(x)= +2x, 若函數F(x)=g(x)-
f(x)+1在區間
上是增函數,求實數
的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線與圓C:
相交,截得的弦長為
.
(1)求圓C的方程;
(2)過原點O作圓C的兩條切線,與函數的圖象相交于M、N兩點(異于原點),證明:直線
與圓C相切;
(3)若函數圖象上任意三個不同的點P、Q、R,且滿足直線
和
都與圓C相切,判斷線
與圓C的位置關系,并加以證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C的方程為,
為橢圓C的左右焦點,離心率為
,短軸長為2。
(1)求橢圓C的方程;
(2)如圖,橢圓C的內接平行四邊形ABCD的一組對邊分別過橢圓的焦點,求該平行四邊形ABCD面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國有個名句“運籌帷幄之中,決勝千里之外”,其中的“籌”原意是指《孫子算經》中記載的算籌.古代是用算籌來進行計算,算籌是將幾寸長的小竹棍擺在平面上進行運算,算籌的擺放形式有縱橫兩種形式,(如圖所示),表示一個多位數時,像阿拉伯計數一樣,把各個數位的數碼從左到右排列,但各位數碼的籌式需要縱橫相間,個位、百位、萬位數用縱式表示,十位、千位、十萬位用橫式表示,以此類推.例如8455用算籌表示就是,則以下用算籌表示的四位數正確的為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一對夫婦為了給他們的獨生孩子支付將來上大學的費用,從孩子一周歲生日開始,每年到銀行儲蓄元一年定期,若年利率為
保持不變,且每年到期時存款(含利息)自動轉為新的一年定期,當孩子18歲生日時不再存入,將所有存款(含利息)全部取回,則取回的錢的總數為
A.B.
C.D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com