【題目】已知橢圓C1:(a>b>0)的右焦點F與拋物線C2的焦點重合,C1的中心與C2的頂點重合.過F且與x軸重直的直線交C1于A,B兩點,交C2于C,D兩點,且|CD|=
|AB|.
(1)求C1的離心率;
(2)若C1的四個頂點到C2的準線距離之和為12,求C1與C2的標準方程.
【答案】(1);(2)
:
,
:
.
【解析】
(1)根據題意求出的方程,結合橢圓和拋物線的對稱性不妨設
在第一象限,運用代入法求出
點的縱坐標,根據
,結合橢圓離心率的公式進行求解即可;
(2)由(1)可以得到橢圓的標準方程,確定橢圓的四個頂點坐標,再確定拋物線的準線方程,最后結合已知進行求解即可;
解:(1)因為橢圓的右焦點坐標為:
,所以拋物線
的方程為
,其中
.
不妨設在第一象限,因為橢圓
的方程為:
,
所以當時,有
,因此
的縱坐標分別為
,
;
又因為拋物線的方程為
,所以當
時,有
,
所以的縱坐標分別為
,
,故
,
.
由得
,即
,解得
(舍去),
.
所以的離心率為
.
(2)由(1)知,
,故
,所以
的四個頂點坐標分別為
,
,
,
,
的準線為
.
由已知得,即
.
所以的標準方程為
,
的標準方程為
.
科目:高中數學 來源: 題型:
【題目】為了解甲、乙兩種離子在小鼠體內的殘留程度,進行如下試驗:將200只小鼠隨機分成兩組,每組100只,其中
組小鼠給服甲離子溶液,
組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經過一段時間后用某種科學方法測算出殘留在小鼠體內離子的百分比.根據試驗數據分別得到如下直方圖:
記為事件:“乙離子殘留在體內的百分比不低于
”,根據直方圖得到
的估計值為
.
(1)求乙離子殘留百分比直方圖中的值;
(2)分別估計甲、乙離子殘留百分比的平均值(同一組中的數據用該組區間的中點值為代表).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某運動制衣品牌為了成衣尺寸更精準,現選擇15名志愿者,對其身高和臂展進行測量(單位:厘米),左圖為選取的15名志愿者身高與臂展的折線圖,右圖為身高與臂展所對應的散點圖,并求得其回歸方程為,以下結論中不正確的為
A. 15名志愿者身高的極差小于臂展的極差
B. 15名志愿者身高和臂展成正相關關系,
C. 可估計身高為190厘米的人臂展大約為189.65厘米,
D. 身高相差10厘米的兩人臂展都相差11.6厘米,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國古代教育要求學生掌握“六藝”,即“禮、樂、射、御、書、數”.某校為弘揚中國傳統文化,舉行有關“六藝”的知識競賽.甲、乙、丙三位同學進行了決賽.決賽規則:決賽共分場,每場比賽的第一名、第二名、第三名的得分分別為
,選手最后得分為各場得分之和,決賽結果是甲最后得分為
分,乙和丙最后得分都為
分,且乙在其中一場比賽中獲得第一名,現有下列說法:
①每場比賽第一名得分分;
②甲可能有一場比賽獲得第二名;
③乙有四場比賽獲得第三名;
④丙可能有一場比賽獲得第一名.
則以上說法中正確的序號是______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知A、B分別為橢圓E:(a>1)的左、右頂點,G為E的上頂點,
,P為直線x=6上的動點,PA與E的另一交點為C,PB與E的另一交點為D.
(1)求E的方程;
(2)證明:直線CD過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某沙漠地區經過治理,生態系統得到很大改善,野生動物數量有所增加.為調查該地區某種野生動物的數量,將其分成面積相近的200個地塊,從這些地塊中用簡單隨機抽樣的方法抽取20個作為樣區,調查得到樣本數據(xi,yi)(i=1,2,…,20),其中xi和yi分別表示第i個樣區的植物覆蓋面積(單位:公頃)和這種野生動物的數量,并計算得,
,
,
,
.
(1)求該地區這種野生動物數量的估計值(這種野生動物數量的估計值等于樣區這種野生動物數量的平均數乘以地塊數);
(2)求樣本(xi,yi)(i=1,2,…,20)的相關系數(精確到0.01);
(3)根據現有統計資料,各地塊間植物覆蓋面積差異很大.為提高樣本的代表性以獲得該地區這種野生動物數量更準確的估計,請給出一種你認為更合理的抽樣方法,并說明理由.
附:相關系數r=,
≈1.414.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知
,動點
滿足
.
(1)求動點的軌跡
的方程;
(2)若點M為(1)中軌跡上一動點,
,直線MA與
的另一個交點為N;記
,若t值與點M位置無關,則稱此時的點A為“穩定點”.是否存在 “穩定點”?若存在,求出該點;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】古代數學名著《九章算術》中記載:“今有羨除,下廣六尺,上廣一丈,深三尺,末廣八尺,無深,袤七尺,問積幾何?”羨除,即三個面是等腰梯形,兩側面是直角三角形的五面體我們教室打掃衛生用的灰斗近似于一個羨除,又有所不同.如圖所示,ABCD是一個矩形,ABEF和CDFE都是等腰梯形,且平面ABCD⊥平面ABEF,AB=30,BC=10,EF=50,BE=26.則這個灰斗的體積是( )
A.3600B.4000C.4400D.4800
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com