【題目】已知雙曲線的焦點是橢圓
的頂點,
為橢圓
的左焦點且橢圓
經過點
.
(1)求橢圓的方程;
(2)過橢圓的右頂點
作斜率為
的直線交橢圓
于另一點
,連結
并延長
交橢圓
于點
,當
的面積取得最大值時,求
的面積.
【答案】(1).(2)
.
【解析】試題分析:(1)由雙曲線的焦點是橢圓
:
(
)的頂點可得
再由橢圓
經過點
可得
,從而可得求橢圓
的方程;(2)設直線
:
,聯立
:
,得
,根據韋達定理及三角形面積公式將當
的面積用
表示,利用基本不等式等號成立的條件,可得當
的面積取得最大值時,求
的面積.
試題解析:(1)由已知得
所以的方程為
.
(2)由已知結合(1)得, ,
,
所以設直線:
,聯立
:
,得
,
得,
(
),
當且僅當,即
時,
的面積取得最大值,
所以,此時
,
所以直線:
,聯立
,解得
,
所以,點
到直線
:
的距離為
,
所以.
【方法點晴】本題主要考查待定系數法求橢圓方程及圓錐曲線求最值,屬于難題.解決圓錐曲線中的最值問題一般有兩種方法:一是幾何意義,特別是用圓錐曲線的定義和平面幾何的有關結論來解決,非常巧妙;二是將圓錐曲線中最值問題轉化為函數問題,然后根據函數的特征選用參數法、配方法、判別式法、三角函數有界法、函數單調性法以及均值不等式法,本題(2)就是用的這種思路,利用均值不等式法求三角形最值的.
科目:高中數學 來源: 題型:
【題目】四棱錐PABCD的三視圖如圖所示,四棱錐PABCD的五個頂點都在一個球面上, E,F分別是棱AB,CD的中點,直線EF被球面所截得的線段長為2 ,則該球的表面積為
A. 12π B. 24π C. 36π D. 48π
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(導學號:05856306)
在△ABC中,內角A,B,C的對邊分別為a,b,c,已知,且b=5,acos C=-1.
(Ⅰ)求角A;
(Ⅱ)求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(導學號:05856334)
已知函數f(x)=ln x+ax2+1.
(Ⅰ)當a=-1時,求函數f(x)的極值;
(Ⅱ)當a>0時,證明:存在正實數λ,使得λ恒成立.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點為拋物線C:
的焦點,過點
的動直線
與拋物線C交于
,
兩點,如圖.當直線
與
軸垂直時,
.
(1)求拋物線C的方程;
(2)已知點,設直線PM的斜率為
,直線PN的斜率為
.請判斷
是否為定值,若是,寫出這個定值,并證明你的結論;若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據某氣象中心觀察和預測:發生于M地的沙塵暴一直向正南方向移動,其移動速度v(km/h)與時間t(h)的函數圖象如圖所示.過線段OC上一點T(t,0)作橫軸的垂線l,梯形OABC在直線l左側部分的面積即時間t(h)內沙塵暴所經過的路程s(km).
(1)當t=4時,求s的值;
(2)將s隨t變化的規律用數學關系式表示出來;
(3)若N城位于M地正南方向,且距M地650 km,試判斷這場沙塵暴是否會侵襲到N城,如果會,在沙塵暴發生后多長時間它將侵襲到N城?如果不會,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是定義在R上的奇函數,當x>0時, .給出以下命題:
①當x<0時,f(x)=ex(x+1);
②函數f(x)有五個零點;
③若關于x的方程f(x)=m有解,則實數m的取值范圍是f(-2)≤m≤f(2);
④對x1,x2∈R,|f(x2)-f(x1)|<2恒成立.
其中,正確命題的序號是________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,其中
為自然對數的底數.
(1)若函數在區間
上是單調函數,試求實數
的取值范圍;
(2)已知函數,且
,若函數
在區間
上恰有3個零點,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com