【題目】是拋物線為
上的一點,以S為圓心,r為半徑
做圓,分別交x軸于A,B兩點,連結(jié)并延長SA、SB,分別交拋物線于C、D兩點.
求拋物線的方程.
求證:直線CD的斜率為定值.
【答案】(1);(2)定值
,證明見解析
【解析】
(1)將點(1,1)代入y2=2px(p>0),解得p,即可得出.
(2)設(shè)直線SA的方程為:y﹣1=k(x﹣1),C(x1,y1).與拋物線方程聯(lián)立,利用根與系數(shù)的關(guān)系可得C坐標. 由題意有SA=SB,可得直線SB的斜率為﹣k,同理可得D坐標,再利用向量計算公式即可得出.
將點
代入
,得
,解得
.
∴拋物線方程為:.
證明:設(shè)直線SA的方程為:
,
聯(lián)立,聯(lián)立得:
,
,
,
,
由題意有,
直線SB的斜率為
,
設(shè)直線SB的方程為:,
聯(lián)立,聯(lián)立得:
,
,
,
,
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)若,且直線
是曲線
的一條切線,求實數(shù)
的值;
(2)若不等式對任意
恒成立,求
的取值范圍;
(3)若函數(shù)有兩個極值點
,
,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一年級學(xué)生全部參加了體育科目的達標測試,現(xiàn)從中隨機抽取40名學(xué)生的測試成績,整理數(shù)據(jù)并按分數(shù)段進行分組,假設(shè)同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替,則得到體育成績的折線圖如圖.
(1)體育成績大于或等于70分的學(xué)生常被稱為“體育良好”.已知該校高一年級有1000名學(xué)生,試估計高一年級中“體育良好”的學(xué)生人數(shù);
(2)為分析學(xué)生平時的體育活動情況,現(xiàn)從體育成績在和
的樣本學(xué)生中隨機抽取2人,求在抽取的2名學(xué)生中,至少有1人體育成績在
的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是拋物線為
上的一點,以S為圓心,r為半徑
做圓,分別交x軸于A,B兩點,連結(jié)并延長SA、SB,分別交拋物線于C、D兩點.
求拋物線的方程.
求證:直線CD的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正四棱錐的側(cè)棱和底面邊長相等,在這個正四棱錐的
條棱中任取兩條,按下列方式定義隨機變量
的值:
若這兩條棱所在的直線相交,則的值是這兩條棱所在直線的夾角大小(弧度制);
若這兩條棱所在的直線平行,則;
若這兩條棱所在的直線異面,則的值是這兩條棱所在直線所成角的大小(弧度制).
(1)求的值;
(2)求隨機變量的分布列及數(shù)學(xué)期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的左、右有頂點分別是
、
,上頂點是
,圓
:
的圓心
到直線
的距離是
,且橢圓的右焦點與拋物線
的焦點重合.
(Ⅰ)求橢圓的方程;
(Ⅱ)平行于軸的動直線與橢圓和圓在第一象限內(nèi)的交點分別為
、
,直線
、
與
軸的交點記為
,
.試判斷
是否為定值,若是,證明你的結(jié)論.若不是,舉反例說明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題,其中所有正確命題的序號是__________.
①拋物線的準線方程為
;
②過點作與拋物線
只有一個公共點的直線
僅有1條;
③是拋物線
上一動點,以
為圓心作與拋物線準線相切的圓,則此圓一定過定點
.
④拋物線上到直線
距離最短的點的坐標為
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com