日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=sinx+tanx.項數為2009的等差數列{an}滿足,且公差d≠0.若f(a1)+f(a2)+…+f(a2008)+f(a2009)=0,則當k=    時f(ak)=0.
【答案】分析:先判斷函數f(x)是奇函數,圖象關于原點對稱,由知等差數列{an},故中間項的函數值為0.
解答:解:∵函數f(x)=sinx+tanx,
∴f(-x)=sin(-x)+tan(-x)=-f(x),即函數是奇函數.
∴函數f(x)的圖象關于原點對稱,
∵項數為2009的等差數列{an}滿足,
∴中間數f(ak)=0,k=1005,
故答案為:1005
點評:利用正弦和正切函數的誘導公式判斷出函數的奇偶性,再由數列各項的范圍求出.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=ax+bsinx,當x=
π
3
時,取得極小值
π
3
-
3

(1)求a,b的值;
(2)對任意x1,x2∈[-
π
3
,
π
3
]
,不等式f(x1)-f(x2)≤m恒成立,試求實數m的取值范圍;
(3)設直線l:y=g(x),曲線S:y=F(x),若直線l與曲線S同時滿足下列兩個條件:①直線l與曲線S相切且至少有兩個切點;②對任意x∈R都有g(x)≥F(x),則稱直線l與曲線S的“上夾線”.觀察下圖:

根據上圖,試推測曲線S:y=mx-nsinx(n>0)的“上夾線”的方程,并作適當的說明.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2-blnx在(1,2]是增函數,g(x)=x-b
x
在(0,1)為減函數.
(1)求b的值;
(2)設函數φ(x)=2ax-
1
x2
是區間(0,1]上的增函數,且對于(0,1]內的任意兩個變量s、t,f(s)≥?(t)恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=cos( 2x+
π
3
)+sin2x.
(Ⅰ)求函數f(x)的最小正周期和值域;
(Ⅱ)在△ABC中,角A、B、C的對邊分別為a、b、c,滿足2
AC
CB
=
2
ab,c=2
2
,f(A)=
1
2
-
3
4
,求△ABC的面積S.

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)已知矩陣A=
a2
1b
有一個屬于特征值1的特征向量
α
=
2
-1
,
①求矩陣A;
②已知矩陣B=
1-1
01
,點O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對應變換作用下所得到的△O'M'N'的面積.
(2)已知在直角坐標系xOy中,直線l的參數方程為
x=t-3
y=
3
 t
(t為參數),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,曲線C的極坐標方程為ρ2-4ρco sθ+3=0.
①求直線l普通方程和曲線C的直角坐標方程;
②設點P是曲線C上的一個動點,求它到直線l的距離的取值范圍.
(3)已知函數f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若關于x的不等式f(x)≥a2-a在R上恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
a
2x
+xlnx
,g(x)=x3-x2-x-1.
(1)如果存在x,x∈[0,2],使得g(x)-g(x)≥M,求滿足該不等式的最大整數M;
(2)如果對任意的s,t∈[
1
3
,2],都有f(s)≥g(t)成立,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 精品国产99 | 亚洲狠狠爱一区二区三区 | 天天操,夜夜操 | 99re热精品视频 | 日韩国产中文字幕 | 中文字幕一区二区三区不卡 | 亚洲欧洲日韩在线 | 亚洲精品久久久一区二区三区 | 亚洲 欧美 激情 另类 校园 | 日韩中文字幕在线观看 | 国产不卡在线观看 | 深夜成人小视频 | 国产一区 | 久久99国产一区二区三区 | 国产区一二 | 欧美在线一区二区 | 中文视频一区 | 久久精品免费电影 | 亚州视频在线 | 日韩一区二区在线观看视频 | 男女羞羞视频免费看 | 国产精品一区久久 | 五月网婷婷 | 啪一啪av | 亚洲视频在线免费观看 | 国产精品久久久久一区二区三区 | 99免费观看视频 | 日韩精品一区在线 | 欧美高清视频在线观看 | 精品一二三区视频 | 久久综合一区二区三区 | 久草在线在线精品观看 | 国产在线精品一区 | 亚洲第一视频 | av国产精品 | 久久久久亚洲 | 欧美区日韩区 | xx视频在线观看 | 影视一区 | 亚洲狠狠爱一区二区三区 | 日本一区二区成人 |