【題目】已知函數.
(1)當a=1時,討論f(x)的單調性;
(2)當x≥0時,f(x)≥x3+1,求a的取值范圍.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數方程為
(
為參數),以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的普通方程和
的直角坐標方程;
(2)已知曲線的極坐標方程為
,點
是曲線
與
的交點,點
是曲線
與
的交點,
、
均異于原點
,且
,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(1)利用“五點法”畫出函數在長度為一個周期的閉區間的簡圖.
列表:
x | |||||
y |
作圖:
(2)并說明該函數圖象可由的圖象經過怎么變換得到的.
(3)求函數圖象的對稱軸方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知A、B分別為橢圓E:(a>1)的左、右頂點,G為E的上頂點,
,P為直線x=6上的動點,PA與E的另一交點為C,PB與E的另一交點為D.
(1)求E的方程;
(2)證明:直線CD過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知三棱柱ABC–A1B1C1的底面是正三角形,側面BB1C1C是矩形,M,N分別為BC,B1C1的中點,P為AM上一點.過B1C1和P的平面交AB于E,交AC于F.
(1)證明:AA1//MN,且平面A1AMN⊥平面EB1C1F;
(2)設O為△A1B1C1的中心,若AO=AB=6,AO//平面EB1C1F,且∠MPN=,求四棱錐B–EB1C1F的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sin2xsin2x.
(1)討論f(x)在區間(0,π)的單調性;
(2)證明:;
(3)設n∈N*,證明:sin2xsin22xsin24x…sin22nx≤.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著智能手機的普及,手機計步軟件迅速流行開來,這類軟件能自動記載每個人每日健步的步數,從而為科學健身提供一定的幫助.某市工會為了解該市市民每日健步走的情況,從本市市民中隨機抽取了2000名市民(其中不超過40歲的市民恰好有1000名),利用手機計步軟件統計了他們某天健步的步數,并將樣本數據分為,
,
,
,
,
,
,
,
九組(單位;千步),將抽取的不超過40歲的市民的樣本數據繪制成頻率分布直方圖如圖,將40歲以上的市民的樣本數據繪制成頻數分布表如下,并利用該樣本的頻率分布估計總體的概率分布.
分組(單位 千步) | |||||||||
頻數 | 10 | 20 | 20 | 30 | 400 | 200 | 200 | 100 | 20 |
(1)現規定,日健步步數不低于13000步的為“健步達人”,填寫下面列聯表,并根據列聯表判斷能否有99.9%的把握認為是否為“健步達人”與年齡有關;
健步達人 | 非健步達人 | 總計 | |
40歲以上的市民 | |||
不超過40歲的市民 | |||
總計 |
(2)利用樣本平均數和中位數估計該市不超過40歲的市民日健步步數(單位:千步)的平均數和中位數;
(3)若日健步步數落在區間內,則可認為該市民”運動適量”,其中
,
分別為樣本平均數和樣本標準差,計算可求得頻率分布直方圖中數據的標準差
約為3.64.若一市民某天的健步步數為2萬步,試判斷該市民這天是否“運動適量”?
參考公式:.
參考數據:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com