日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
11.設三個數$\sqrt{(x-\sqrt{2})^{2}+{y}^{2}}$,$\sqrt{3}$,$\sqrt{(x+\sqrt{2})^{2}+{y}^{2}}$成等差數列,記(x,y)所對應點的曲線是C.
(1)求曲線C的方程;
(2)已知點M(1,0),點N(3,2),過點M任作直線l與曲線C相交于A,B兩點,設直線AN,BN的斜率分別為k1,k2,問k1+k2是否為定值?請證明你的結論.

分析 (1)根據題意,分析可得$\sqrt{(x-\sqrt{2})^{2}+{y}^{2}}$+$\sqrt{(x+\sqrt{2})^{2}+{y}^{2}}$=2$\sqrt{3}$,由橢圓的定義可得點P(x,y)對應的曲線方程C是橢圓,進而由題意可得a、c的值,計算可得b的值,代入橢圓的標準方程即可得答案;
(2)根據題意,分2種情況討論:、①當直線l的斜率不存在時,直線l的方程為x=1,代入橢圓的方程可得A,B兩點的坐標,計算可得k1+k2的值,②當直線l的斜率存在時,設直線l的方程為y=k(x-1),聯立直線與橢圓的方程,可得(3k2+1)x2-6k2x+3k2-3=0.由根與系數的關系分析可得x1+x2=$\frac{6{k}^{2}}{3{k}^{2}+1}$,x1x2=$\frac{3{k}^{2}-3}{3{k}^{2}+1}$.結合直線的方程可得k1+k2═$\frac{2-{y}_{1}}{3-{x}_{1}}$+$\frac{2-{y}_{2}}{3-{x}_{2}}$,將其變形化簡可得k1+k2的值,綜合2種情況即可得答案.

解答 解:(1)、依題意:三個數$\sqrt{(x-\sqrt{2})^{2}+{y}^{2}}$,$\sqrt{3}$,$\sqrt{(x+\sqrt{2})^{2}+{y}^{2}}$成等差數列,
則有$\sqrt{(x-\sqrt{2})^{2}+{y}^{2}}$+$\sqrt{(x+\sqrt{2})^{2}+{y}^{2}}$=2$\sqrt{3}$,
所以點P(x,y)對應的曲線方程C是橢圓,
得$\left\{\begin{array}{l}{a=\sqrt{3}}\\{c=\sqrt{2}}\end{array}\right.$.
故b=1
橢圓C方程為$\frac{{x}^{2}}{3}$+y2=1,
(2)、①當直線l的斜率不存在時,直線l的方程為x=1.由$\left\{\begin{array}{l}{x=1}\\{\frac{{x}^{2}}{3}+{y}^{2}=1}\end{array}\right.$解得$\left\{\begin{array}{l}x=1\\ y=±\frac{\sqrt{6}}{3}.\end{array}$
不妨設A(1,$\frac{\sqrt{6}}{3}$),B(1,-$\frac{\sqrt{6}}{3}$),
因為k1+k2=2,
②當直線l的斜率存在時,設直線l的方程為y=k(x-1).
將y=k(x-1)代入$\frac{{x}^{2}}{3}$+y2=1,
整理得(3k2+1)x2-6k2x+3k2-3=0.
設A(x1,y1),B(x2,y2),則x1+x2=$\frac{6{k}^{2}}{3{k}^{2}+1}$,x1x2=$\frac{3{k}^{2}-3}{3{k}^{2}+1}$.
又y1=k(x1-1),y2=k(x2-1),
所以k1+k2=$\frac{2-{y}_{1}}{3-{x}_{1}}$+$\frac{2-{y}_{2}}{3-{x}_{2}}$
=$\frac{(2-{y}_{1})(3-{x}_{2})+(2-{y}_{2})(3-{x}_{1})}{(3-{x}_{1})(3-{x}_{2})}$
=$\frac{[2-k({x}_{1}-1)](3-{x}_{2})+[2-k({x}_{2}-1)](3-{x}_{1})}{{x}_{1}{x}_{2}-3({x}_{1}+{x}_{2})+9}$
=$\frac{2(12{k}^{2}+6)}{12{k}^{2}+6}$=2
即k1+k2=2,
綜合可得:其k1+k2值為定植為2.

點評 本題考查橢圓與直線的位置關系,涉及橢圓的定義以及標準方程,(2)中不能忽略直線斜率不存在的情況.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

15.四棱柱ABCD-A1B1C1D1的底面是平行四邊形,M是AC與BD的交點.若$\overrightarrow{AB}$=$\overrightarrow a$,$\overrightarrow{AD}$=$\overrightarrow b$,$\overrightarrow{A{A_1}}$=$\overrightarrow c$,則$\overrightarrow{{C_1}M}$可以表示為(  )
A.$\overrightarrow a+\overrightarrow b+\frac{1}{2}\overrightarrow c$B.$-\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b+\overrightarrow c$C.$-\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b-\overrightarrow c$D.$\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b+\overrightarrow c$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.3<m<5是方程$\frac{{x}^{2}}{5-m}$+$\frac{{y}^{2}}{m-3}$=1表示橢圓的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.如果拋物線方程為y2=4x,那么它的焦點坐標為(  )
A.(1,0)B.(2,0)C.(-1,0)D.(-2,0)

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

6.若函數f(x)=ax+1(a>0,a≠0)的圖象恒過(-1,1)點,則反函數的圖象恒過點(1,-1).

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

16.f(x)在R上為奇函數,且當x>0時f(x)=x-1,則當x<0時f(x)=x+1.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.已知全集U={0,2,4,6,8,10},集合A={2,4,6},B={1},則(∁UA)∪B等于(  )
A.{0,1,8,10}B.{1,2,4,6}C.{0,8,10}D.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.求下列各式的值
(1)1.5${\;}^{-\frac{1}{3}}$×(-$\frac{7}{6}$)0+80.25×$\root{4}{2}$+($\root{3}{2}$×$\sqrt{3}$)6-$\sqrt{(-\frac{2}{3})^{\frac{2}{3}}}$
(2)2log32-log3$\frac{32}{9}+{log_3}8-{5^{2{{log}_5}3}}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.函數y=x3+x的遞增區間是(  )
A.(-∞,1)B.(-1,1)C.(-∞,+∞)D.(1,+∞)

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日一日干一干 | 中文字幕一二三 | 成人二区 | 欧美2区 | 精品国产乱码久久久久久闺蜜 | 欧美精品三区 | 久久精品国产亚洲blacked | 久久888 | 日本高清视频网站www | 久久综合九色综合欧美狠狠 | 成人在线免费 | 欧美一区二区三区精品免费 | 成人黄网在线观看 | 九九九久久国产免费 | 中文字幕一区二区三区日韩精品 | 欧美激情欧美激情在线五月 | 青草青草 | 久久国产精品毛片 | 三级av网站 | 久久精品日产高清版的功能介绍 | 久久精品国产99久久久 | 日本亚洲欧美 | 日韩视频在线免费 | 91久久精品 | 亚洲成人黄色网 | 午夜免费视频 | 国产精品揄拍一区二区久久国内亚洲精 | 久久女人| 美女日批视频在线观看 | 黄www| vagaa欧洲色爽免影院 | 国产精品一区二区三区久久 | 国产成人精品a视频一区www | 欧美精品在线一区二区三区 | 国产欧美综合在线 | www污在线观看 | 国产一区二区自拍 | 国产三级在线观看 | 一区二区三区免费网站 | 一区二区久久 | 激情99|